
RenderMan Compiler
for the

RPU Ray Tracing
Hardware Architecture

Tomasz Węgrzanowski

1

Eidesstattliche Erklärung

Hiermit erkare ich an Eides Statt, dass ich die vorliegende Arbeit selbständig verfasst
und außer den angegebenen keine weiteren Hilfsmittel verwendet habe.

Saarbrücken den 30. September, 2006

Tomasz Węgrzanowski

2

Table of Contents
Abstract...5
1 Introduction..5

1.1 Real-time photorealistic computer graphics..5
1.2 RPU Ray Tracing Hardware Architecture...6
1.3 RenderMan Shading Language (RSL)..6
1.4 RSL compiler for RPU..6
1.5 Overview...7

2 RPU Ray Tracing Hardware Architecture...7
2.1 RPU rendering model..8
2.2 Instruction set..8
2.3 Registers..10
2.4 Instruction execution...10
2.5 Call stack...12
2.6 Limitations...13

3 RenderMan Interface...13
3.1 RenderMan rendering model...13
3.2 RenderMan Shading Language...13
3.3 Mapping between RenderMan shading model and the hardware.........15

4 Virtual machine..15
4.1 Ray tracing in the virtual machine...15
4.2 Virtual machine drivers...16

5 Compiler..16
5.1 Compilation process..16
5.2 Parsing...16
5.3 Function inlining..17
5.4 Compilation of multiple functions...19

6 Intermediate representation...20
6.1 Single Static Assignment form..21
6.2 Copy propagation..22
6.3 Opcode simplification and constant folding..23
6.4 Common Subexpression Elimination ...24
6.5 Other optimizations...25

7 Code generation...26
7.1 Application Binary Interface...26
7.2 Calling Convention..27
7.3 ABI and performance..27
7.4 Assembly-level optimizations..28
7.5 Opcode simplification and constant folding..29
7.6 Forwarding..29
7.7 Dead code elimination...31

8 Register allocation...33
9 Instruction scheduling..35

9.1 Instruction scheduling example...38
9.2 Special operations in scheduling...39
9.3 Instruction pairing...39

3

9.4 Other possible improvements of the scheduling algorithm...................40
10 Code output..40
11 Implementation issues..40

11.1 Testing..40
11.2 Automatic code coverage checking...42
11.3 Build system..42
11.4 Strings support...42
11.5 Version control...43

12 Results..44
12.1 Depth shaded bunny..44
12.2 More realistic bunny..46

13 Limitations and future work..49
13.1 Hardware compatibility...49
13.2 RenderMan compatibility..50
13.3 Streamlining..50
13.4 Testability..50
13.5 Optimizations...51
13.6 Taking advantage of full power of the hardware.................................51
13.7 Portability..52
13.8 Other improvements..52

14 Conclusions..52
Bibliography...52

4

Abstract
RPU Ray Tracing Architecture promises radical improvement in photorealism
and performance of real-time computer graphics by shifting paradigm from
rasterization to recursive ray tracing. This requires shaders different and more
complex than shaders used by current generation of GPUs, and effective means
of building them. RenderMan Shading Language is a de-facto industry
standards for programming shaders on the high end. A compiler which
translates a subset of RenderMan Shading Language into RPU assembly was
developed. Also developed were a virtual machine emulating RPU and a
comprehensive test suite verifying correctness of the compiler.

1 Introduction

1.1 Real-time photorealistic computer graphics

Real-time photorealistic computer graphics is highly computationally intensive task,
and general-purpose CPUs do not provide sufficient power to fulfill graphical needs of
computer games and other applications. Special hardware is used to enhance graphical
capabilities of computers since as early as the 1970s [WIKI]. The hardware was
initially very primitive and accelerated only simple 2D operations. It gradually
advanced and by the mid 1990s fixed-pipeline rasterization-based GPUs became the
standard for majority of personal computers.

The rendering pipelines became more flexible with
addition of vertex and pixel shaders (Figure 1.1) – simple
programs that have limited control over the rendering
process. Even relatively simple shaders can affect
photorealism much more than increase in scene geometric
complexity. Initially the shaders were only able to run
identical computations for each pixel (or vertex). Limited
support for conditional execution and control flow was
added later, however advanced features like recursive
function calls are still not supported.

As of 2006 the paradigm is still rasterization one triangle
at a time. Rasterization is a purely local computation and
does not require access to the complete scene information.
This feature makes it possible to achieve high parallelism.
On the other hand lack of access to the complete scene
makes it very difficult and expensive to compute global
effects like shadows and reflections. Another problem of
rasterization is that as each triangle is processed
separately, the computation time is linearly proportional to scene complexity.

Another common approach to photorealistic 3D graphics – one that dominates at the
high end – is recursive ray tracing. In ray tracing instead of rendering single triangle
against the complete screen, a single ray is rendered against whole scene. This
approach has advantage of handling global effects much more easily and of average
logarithmic complexity in number of scene elements. Ray tracing also provides greater
opportunities for scalability, as rays are completely independent from each other. The
main disadvantage of ray tracing is lack of efficient hardware support. Fully software

5

Rasterization pipeline
(simplified)

Scene geometry

Vertex shader
(programmable)

Rasterization

Pixel shader
(programmable)

Frame buffer

Figure 1.1

ray tracing has insufficient performance for real time computer graphics.

1.2 RPU Ray Tracing Hardware Architecture

RPU [RPU05] is a project with goals of developing hardware for real-time 3D graphics
based on ray tracing that can in the long term surpass the current design of GPUs in
photorealism and performance. The main differences in architecture compared to
mainstream GPUs are using hardware-accelerated ray tracing instead of rasterization,
and providing support for significantly more advanced shaders.

Shaders in RPU have much greater control over the rendering process. Shaders can
have arbitrary control flow, including recursive function calls. They can also shot
additional rays to compute shadows, reflections, transparency, and other effects that are
difficult to achieve using rasterization.

This new power requires adequate support for specifying shaders. Programing them in
RPU-specific assembly language is difficult and very error-prone. As RPU is a novel
architecture and does not use any standard instruction set, no existing compiler could
be easily adapted to target RPU, and a new compiler had to be developed from scratch.

1.3 RenderMan Shading Language (RSL)

The issue of writing highly complex shaders has already been dealt with in high end
rendering systems. The de-facto standard for programming high-end shaders is
RenderMan Shading Language (RSL) developed by Pixar. One of design goals of
RenderMan was making it “future-proof” and not tying it to any specific technology.
Since its publication in 1989 it became supported by multiple renderers, and RSL
become the most commonly used shading language.

The RenderMan Interface Specification [RISPEC] describes the rendering model in
terms of ray-tracing, what makes sure that it will fit systems based on ray tracing well.
It was originally aimed at software renderers using either ray-tracing or REYES
algorithm.

Some alternative shading languages have been recently developed for programming
GPU shaders, including OpenGL Shading Language, NVIDIA's Cg, and Microsoft's
HLSL. They were not investigated, but it is possible that replacing the parser and minor
changes to the compiler can make it support some useful subset of these languages.

1.4 RSL compiler for RPU

The shaders for RPU were initially coded by hand in assembly. Programming and
especially debugging in low-level languages is very difficult. Additionally, the shaders
are more complex than traditional GPU shaders and even more effort is required to
obtain highly efficient code. Together these reasons make it necessary to use a high
level language for writing shaders.

As a de-facto industry standard for high-level shader programming, RenderMan
Shading Language is a natural choice for RPU. However, support for full RenderMan
Shading Language was considered infeasible.

First, many features of RSL are very difficult to implement in hardware-based solution.
Some of them are string processing, which includes POSIX-compatible regular
expressions, string building by functions like concat and format (what would
require memory management) and I/O using printf. Displacement shaders that can

6

affect scene geometry would also be very difficult to support without modifying the
hardware. The second reason for not supporting full RSL is its complexity. Reasonably
complete RSL compiler would take too much work, especially since compiling to
hardware is significantly more difficult than a software implementation.

Relatively small subset of RenderMan Shading Language features – functions, surface
shaders, scalar and vector operations and basic standard functions – is sufficient to
achieve the project's goals of providing simple to use way of programming complex
shaders.

Extending range of supported features is potential scope of future work. It would make
it possible to use existing RSL shaders with fewer modifications, and possibly even
obtaining full compatibility, most likely by software fallbacks in case of features that
cannot be efficiently implemented in hardware.

1.5 Overview

As compiler debugging without special hardware support can be very difficult, a virtual
machine that emulated RPU was implemented before work on the actual compiler
started.

The compiler takes RSL files that contain functions and shaders as input and generates
assembly code as output. An assembler program then generates a form suitable for the
virtual machine. An alternative assembler program can also target the actual hardware.

2 RPU Ray Tracing Hardware Architecture
RPU ray tracing hardware architecture can be conceptually decomposed into two parts.
One part is responsible for computing ray/scene intersections, and for all our purposes
it can be considered a black box. The other part is a highly parallel processing unit that
executes shaders. It consists of large numbers of simple processors which concurrently
run multiple threads.

Processors are not independent, but grouped in fours. Every such group executes a
“chunk” of 4 threads. Processors in every group are synchronized and execute identical
instructions. If threads in a chunk become desynchronized by taking different branches
of a conditional jump, the chunk is divided. When processors execute incomplete
chunk, only some of them are active, while others stay idle. Divided chunk is
reassembled on function return instruction.

Many such chunks are available at the same time. When execution of current chuck
cannot proceed, usually because its next instruction waits for earlier instructions,
memory loads, or ray tracing to finish, group of processors switches to a different
chunk. Switching does not cost even a single cycle. Switching guarantees very high
utilization of the hardware. Dependencies between instructions are statically calculated
by assembler, and there is no out-of-order execution, speculative execution, branch
prediction etc.

Threads in a chunk typically represent rays for consecutive pixels. For good
performance, they should avoid desynchronization and if it is necessary resynchronize
early. For typical scenes synchronization rates are very high, however
desynchronization can significantly harm performance if scene has very high geometric
complexity or shaders have multiple branches.

Parallelism of RPU is highly transparent, and it does not need to be explicitly

7

considered to efficiently program shaders. Even a very simple model of unpipelined
sequential processor gives a reasonable measure of shader performance – as switches
do not introduce pipeline stalls, number of instruction per processor per cycle executed
does not significantly depend on code, assuming sufficient performance of memory and
ray tracing units.

Certain performance issues are not predicted by such simple model, including
expensiveness of branching and, in scenes with high geometric complexity, trace
instruction due to possible desynchronization, and need to encapsulate code with
multiple branches in functions to take advantage of resynchronization at function
return.

2.1 RPU rendering model

In the RPU system a new thread is generated for each pixel. Groups of four
neighboring pixels are assigned to the same chunk. Typically the main shader for a
pixel will generate “primary” ray, and run the shader associated with the triangle hit by
the ray. This shader can in turn generate “secondary” rays. Full control of the process is
in the shaders, so a different path can be followed. For example pixels inside program's
interface area could get their colors from a static texture instead of tracing rays.

2.2 Instruction set

The instruction set (Tables 2.1, 2.2) is modeled after current GPUs. All instructions can
operate on 4-element vectors (xyzw). It is also possible to split an operation into two
independent parts – doing either 3/1 (one operation on xyz, another on w) or 2/2 split
(one operation on xy, another on zw). This is usually very efficient, as the most
common data types in computer graphics are 1- (scalars), 3- (points, vectors, colors),
and occasionally 2- (2D point and vectors, pixel and texture coordinates), or 4- (rows
of transformation matrices) -element vectors of floating point numbers.

Basic operations like component-wise copying, addition and multiplication are
available. Other operations include conversions to and from integers, component-wise
extraction of fractional part, fused multiply-and-add, multiple kinds of dot product
operations, memory load and store, texture load and store, conditional jump, recursive
call, function return, and trace instruction that shots a ray and finds a point where it hits
the scene.

All operands can be modified by multiplying by ±0.5, ±1, ±2 or ±4, and by arbitrary
rearrangement (swizzling) of components. It is possible to limit the components
modified in the target register by using a write-back mask.

Instructions can have modifiers rcp, rsq and sat. rcp and rsq compute a
respectively reciprocal and reciprocal of square root of the result's w component, and
save it to the special S register. They are commonly used in scalar division and square
root computations, and together with dot product opcodes to compute vector length or
normalize it. sat modifier clamps result to [0,1] range before writeback. It is not
currently used by the compiler due to lack of a construction in the RenderMan Shading
Language that can be easily compiled to it (clamp function can be made more
efficient using sat sometimes, but it is difficult to do that automatically).

Integer instructions (addition, multiplication, bit shifts and logic instructions) are
supported in the fourth (w) component. As RSL does not have integers at all, the
compiler does not use such operations.

8

Floating-point Arithmetics Instructions

(.i notation means computing each component independently)

Opcode Meaning

mov Rdest , R src1 Rdest . i  R src1 . i

frac Rdest , R src1 Rdest . i  fracR src1 . i

add Rdest , R src1 , R src2 Rdest . i  R src1 . iRsrc2 . i

mul Rdest , R src1 , R src2 Rdest . i  R src1 . i⋅R src2 .i

mad Rdest , R src1 , R src2 , R src3 Rdest . i  R src1 . i⋅R src2 .iR src3 .i

dp2h Rdest , R src1 , R src2 v  R src1 . x⋅R src2 . xR src1 . y⋅R src2 . y
 R src1 . z

Rdest  v , v , v , v 

dp3 Rdest , R src1 , R src2 v  R src1 . x⋅R src2 . xR src1 . y⋅R src2 . y
 R src1 . z⋅Rsrc2 . z

Rdest  v , v , v , v 

dp3h Rdest , R src1 , R src2 v  R src1 . x⋅R src2 . xR src1 . y⋅R src2 . y
 R src1 . z⋅Rsrc2 . zRsrc1 .w

Rdest   v , v , v , v 

dp4 Rdest , R src1 , R src2 v  R src1 . x⋅R src2 . xR src1 . y⋅R src2 . y
 R src1 . z⋅Rsrc2 . zRsrc1 . w⋅Rsrc2 .w

Rdest   v , v , v , v 

Table 2.1

Other Instructions

(integers operations omitted)

Opcode Meaning

jmp label Jump to label

call label push n Call a function, address of which is label

call Raddr push n Call a function, address of which is in Raddr

return Return from a function

trace Rorig , Rdir , Rarg Shot a ray from Rorig in direction Rdir with
parameters Rarg

load I i , A.j , n Load from memory address A.jn to I i

load4 A.j , n Equivalent of:
load I 0 , A.j , n
load I 1 , A.j , n+1
load I 2 , A.j , n+2
load I 3 , A.j , n+3

9

store A.j , n, R s Store R s under memory address A.jn

Table 2.2

Control instructions (jmp, call, return) can be executed conditionally by pairing
them with a regular instruction. Such pairing has form “primary_instruction
+ control_instruction condition”:

add R15, R3, R5 + jmp label and xyzw (<0)

What means jump to label if all components of R3+R5 are negative.

2.3 Registers

The register set (Table 2.3) consists of 16
general-purpose registers, named R0 to R15, 32
constant registers C0 to C31, hardware stack – 8
top elements of which are accessible (S0 to S7),
and a few special registers – S for storing results
of rcp/rsq operations, I0 to I3 for memory input,
A for memory addresses, HIT, HIT_TRI and
HIT_OBJ for storing results of trace operation.

All registers except for HIT_TRI and HIT_OBJ
are 4-element floating point vectors. Address
(A) and special (S) register are also vectors,
however as operations they in which they are
used are inherently scalar, they are usually
treated instead as groups of 4 independent scalar
registers.

By common assembly convention address of currently executed instruction is treated as
a special “PC” (Program Counter) register, even through it is not a real directly
accessible register.

2.4 Instruction execution

Instructions set of RPU is modeled after GPU shader assembly languages. Compared
with most modern general-purpose architectures, instructions are more complex and
have more stages, like swizzling, premultiplication and optional clamping.

Disregarding 3/1 and 2/2 instruction pairings for simplicity, execution of a single
instruction proceeds as follows:

● Contents of each requested register is read. Scalar constant can be specified as a
source instead of a register, in which case it is loaded into all 4 components.

● Components are rearranged (swizzled). Any component can take any other
component as input. There are 256 possible ways to swizzle a source. Components
cannot be swizzled between different sources. For example yzxz swizzling mask
means that:

● x component gets value of y,
● y component gets value of z,
● z component gets value of x,
● w component gets value of z.

10

Registers

General purpose R0 – R15

Constant C0 – C31

Stack frame S0 – S7

Special S.x – S.w

Memory Input I0 – I3

Address A.x – A.w

Hit information HIT
HIT_TRI
HIT_OBJ

Program Counter PC
Table 2.3

As a notational convention, if fewer than four components are specified, the last
one is duplicated to fill the remaining positions, so xy mask is equivalent to
xyyy. Not giving a swizzling mask is equivalent to swizzling mask xyzw (no
rearrangement).

● For every source, all four components are multiplied by ±0.5, ±1, ±2 or ±4 (by
adding -1, 0, 1 or 2 to the floating point exponent and possibly changing the sign).
All components must use the same multiplier.

● The actual computation is performed.
● If _sat modifier is specified, the result is clamped to [0,1] range.

● The components of the result specified in the writeback mask are saved to the target
register.

● If _rcp or _rsq is specified, reciprocal or respectively reciprocal of square root of
result's fourth (w) component is computed and saved to special S register using the
same writeback mask. Typically the writeback mask has only one component on, so

● If secondary operations (most commonly conditional jump, but also call and return)
was paired with the operation, individual components of the result are compared
with 0 and 1. If all (or any – depending on a flag) components selected in a
condition selection mask are in correct ranges, the secondary instruction is executed.
Example of such condition is or xy (>=0 and <1), which means “either x or
y component of the result is within [0,1) range”.

This instruction set is very powerful, however it is very challenging for compiler or
programmer to use it efficiently. As an example, cross product can be encoded in just 2
instructions:

 mul R0.xyz, R1.yzx, R2.zxy
 mad R0.xyz, -R1.zxy, R2.yzx, R0
Let's demonstrate execution by computing cross product of R1=(1,2,3,0) with
R2=(4,5,6,0).

● First operation:
● Sources are read. Source 1 (R1) is 1,2,3,0 , source 2 (R2) is 4,5,6,0

● Sources are swizzled to 2,3,1,1 and 6,4,5,5 .
● There is no negation or multiplication.
● Sources are multiplied component-wise giving 12,12,5,5

● First three components of the result 12,12,5 are saved to R0
● Second operation:

● Sources are read. Source 1 (R1) is 1,2,3,0 , source 2 (R2) is 4,5,6,0 ,
source 3 (R0) is 12,12,5,0

● Sources are swizzled to 3,1,2,2 , 5,6,4,4 , and 12,12,5,0 .
● The first source is negated, the other two are not modified, giving

−3,−1,−2,−2 , 5,6,4,4 and 12,12,5,0

● Sources are multiplied and added component-wise, giving −3,6,−3,−8 .

● First three components of the result −3,6,−3 are saved to R0. This is the
computed cross product of 1,2,3 and 4,5,6 .

The fourth component was not useful in the computations. This is a very common
situation, as 3-element vectors are the most popular data type in computer graphics. For

11

that reason those two instructions would most likely be paired with scalar computations
using 3/1 split (first instruction deals with xyz, the second with w), resulting in even
better performance. As neither the compiler nor the virtual machine supports such
pairings, the subject will not be elaborated upon.

2.5 Call stack

As RPU supports recursive function calls, it needs
some kind of a call stack. The stack design is a
hybrid of SPARC-style register windows and regular
memory stack with register-based argument passing.

The call stack is best presented as a pair of
synchronized stacks – the control stack and the data
stack. The control stack contains return addresses
and shift sizes, and the data stack contains the actual
data. Only an 8-element “register window” of the
data stack is accessible for reading and writing
(Figure 2.1). The register window affects only “stack
registers” and does not affect the regular registers
(R0–R15).

There are two operations that control the stack:

● Function call – call f push n – pushes
address of the next instruction and the shift value
n onto the control stack, shifts the stack register
window by n, and jumps to the requested label f.

● Function return – return – based on the the top
entry of the control stack, register window is
restored, and program counter is set to return
address. Then top entry of the control stack is
popped.

The reason SPARC-style register windows are not
used is that register file needs 3 read ports (for mad
instruction), and big register file for stack together with 3 read ports would be very
expensive. The stack file has only one read port, that is only one value can be read from
it in a single cycle – so it is impossible to add two values on a stack without copying
one of them to a regular register first.

As there are no push/pop instructions, it is impossible to use the stack for register
spilling if there are more variables than registers, like most other compilers do.
Physical size of the stack is not known. In case of stack overflow, part of the stack is
saved to the memory, and restored when it is needed. Therefore the stack behavior is
identical to that of infinitely big stack, and RPU programs do no need to worry about
stack size.

Such stack design forces function arguments and return values to use regular registers,
as the visible window of only 8 registers can easily be too small for both arguments and
saved values.

12

Changes in the stack after two
function calls, with shifts of 3
and 2.

Shaded cells are not
accessible.

S7

S6

S7 S5

S6 S4

S5 S3

S7 S4 S2

S6 S3 S1

S5 S2 S0

S4 S1 Y

S3 S0 X

S2 C C

S1 B B

S0 A A
Figure 2.1

2.6 Limitations

The shaders can be rather complex, however the architecture still has many limitations.
The most apparent is very low-precision (24 bit) and lack of IEEE 754 compatibility of
floating point operations. While some parts of the IEEE 754 standard like alternative
rounding modes, exceptions, and denormals are rarely needed by shaders, the hardware
currently does not even have a fully reliable way to compare floating point numbers for
equality, what can be a major problem.

The computations must be structured in a way that keeps shaders of neighboring pixels
execute the same code most of the time. If the control flow of individual pixels is
highly independent, performance will suffer. Ray tracing typically keeps the
synchronization at high level.

3 RenderMan Interface
RenderMan Shading Language is part of RenderMan Interface Specification, current
version of which (3.2) was published by Pixar in September 1989 (minimally revised
version 3.2.1 was published in November 2005). One of the goals of the specification
was being “future-proof”, and not being bound to any rendering program or algorithm.
It fully achieved this goal, still being a de-facto standard in 2006, 17 years after
publication, in spite of great changes in computing and computer graphics that took
place during that time.

3.1 RenderMan rendering model

RenderMan rendering model (Figure 3.1) can
be best described in terms of ray tracing.

A ray is shot into the scene, and where it
intersects with element (triangle) of the scene,
surface shader of this element is called. The
surface shader can request information about
local illumination, what can result in one or
more light shaders being called. It can also
shot additional rays that automatically call
surface shaders when they hit another scene
element. If space through which a ray travels
has a volume shader associated with it, a
volume shader will be called to modify the ray
color. After the original ray returned with color
information, imager shader can modify it
before the pixel color is finally set.

Displacement shaders control shape of scene
elements and do not have direct equivalent in
the ray tracing model.

3.2 RenderMan Shading Language

RSL source files consist of six kinds of subroutines:

● functions – routines that compute and return values based on their arguments. They
can be used by all types of shaders and by other functions.

13

RenderMan rendering model

Data flow represented by arrows.
Displacement shaders are separate
from the main rendering pipeline.

Surface shaders

Volume shaders

Imager shader

Light shaders

Secondary rays

Displacement
shaders

Frame buffer

Figure 3.1

● surface shaders – the most important type of shaders, they specify color of light that
arrives from a point on a surface. Each surface has an associated surface shader.
Surface shaders can also start new rays using RSL function trace.

● light shaders – the second most important type of shaders, they specify color of light
coming from light sources. They are used by surface shaders to calculate incoming
light.

● volume shaders – specify what happens to the light passing through a volume, be it
atmosphere or inside of an object.

● imager shaders – convert incoming light information to final pixel values. They can
be used for techniques like high dynamic range imaging.

● displacement shaders – can displace and change normals of surface. Normal
modification is straightforward to implement in most rendering algorithms, and is
used by bump mapping. Displacement support is more difficult to implement and it
marked optional by the specification.

RSL syntax is similar to C. The supported types are floating point numbers, strings,
colors, 3D vectors, points, and normals, and 4x4 matrices. Points, vectors and normals
can be freely mixed. Colors have 3 components by default, but according to the
specification different number can be used. This feature is not supported, as it would be
difficult to implement it efficiently in hardware.

The supported operations include addition (+), subtraction (-), multiplication (*) and
division (/) and also two graphics-specific operations – dot product (.) and cross
product (^). Many other operations are implemented as standard library functions.

Flow can be controlled by conditional execution (if/else) and loops
(while/for). RSL supports break/continue statements. break/continue
can be followed by a number which indicates that they refer to a loop other than the
innermost. return statement can be used to return values from functions, but cannot
be used inside shaders. Shaders take arguments and return values using special
variables.

There are also illuminance/illuminate/solar loop-like control structure
that describe scene illumination.

A simple surface shader can be seen on Figure 3.2.

A matte surface shader in RSL

surface matte(
 float Ka = 1;
 float Kd = 1;
)
{
 normal Nf = faceforward(normalize(N), I);
 Oi = Os;
 Ci = Os * Cs * (Ka*ambient() +
 Kd*diffuse(Nf));
}

Figure 3.2

14

3.3 Mapping between RenderMan shading model and the hardware

Rendering models of RenderMan and of the RPU hardware are significantly different.
In RenderMan shaders are never called explicitly, both primary ray and secondary rays
shot by trace instruction call appropriate shaders behind the scenes. RPU performs
only explicit shader calls. In similar way, primary rays are shot implicitly in
RenderMan, but are controlled by a shader in RPU.

RenderMan has six kinds of shaders that need to be mapped to hardware shaders. The
most kind are displacement shaders. As scene geometry in RPU is not controlled by
shaders, displacement shader would need to be run before scene is sent to the hardware.

Other shader types are more straightforward. Primary rays generation and imager
shader together become “main” shader in RPU. Both primary rays and secondary rays
shot by RenderMan trace instruction are converted to RPU trace followed by call
to shader associated with the hit object. RenderMan surface shaders are compiled to
RPU shaders associated with scene objects.

Volume shaders could be implemented by replacing volumes by their boundaries, and
volume shaders by surface shader of the boundaries. This solution is not without
problems. In the most common case, boundaries of volume are determined by scene
polygons, which already have own surface shaders. When such boundary is hit, two
shaders must be run – first shader associated with the volume, then surface shader of
the polygon. The opposite side of the polygon can be associated with a different
volume shader. In RPU every object can be associated with at most one shader.
Therefore to support volume shaders we would need to compile a special shader that
checks which side was hit, calls volume shader associated with the side if any, and then
calls the proper surface shader.

Light shaders can be compiled to functions. Surface shaders requesting information on
illumination would then call such functions. As number and parameters of light sources
are not known, a global list of all light sources would be required, and functions
associated with them would be called in a loop and their results added.

4 Virtual machine
Due to lack of access to the actual hardware, a virtual machine has been implemented.
The virtual machine is an Objective Caml library. Hardware state is represented by:

● register file
● call stack
● code memory
● data memory
Separating code and data memory makes it possible to represent opcodes in convenient
form instead of decoding them from binary format at each operation. The virtual
machine contains procedures that execute shaders, and procedures that perform ray
tracing.

4.1 Ray tracing in the virtual machine

Ray tracing in the virtual machine supports only scenes consisting of triangles
organized into a hierarchy of axis-aligned bounding boxes. The memory layout of the
scene is not compatible with the hardware memory layout, however this does not cause

15

any compatibility problems, as the generated code treats ray tracing as a black box and
does not need to know anything about how it is implemented.

Memory layout of data associated with scene elements is not used by either hardware
ray tracing unit or virtual machine ray tracing procedures, so the compiler can use
arbitrary layout as long as it is consistent with the application that generates the scenes.

The algorithms used by virtual machine ray tracing are:

● Intersection tests between rays and axis-aligned bounding boxes
● Intersection tests between rays and triangles
● Algorithm that computes intersections between rays and the scene using the two

aforementioned tests
● Algorithm that preprocesses the scene by generating a hierarchy of axis-aligned

bounding boxes (it does not run inside the virtual machine, the scene needs to be
preprocessed before)

4.2 Virtual machine drivers

As the virtual machine itself is a library, driver programs are needed to actually use it.
There are multiple driver programs for the virtual machine. In addition to sharing the
VM library they also share code that loads programs and scenes to memory, saves
PNM images as output etc.

The drivers are:

● 9 test drivers for virtual machine testing. They generate 22 test images to verify that
virtual machine works. The VM is further verified by compiler tests.

● A test driver for testing individual functions. Initial register state is given on
command line, and the final register state is printed out when the virtual machine
exits.

● A test driver for testing shaders. Image size and initial register state is given on
command line, and the image (in PNM format) is printed to the standard output.

5 Compiler
The compiler consists of two executables (Figure 5.1). The auxiliary executable is an
Objective Caml program that parses the source and generates internal representation,
but without converting it to SSA form.

The main executable is a Ruby program that calls cpp preprocessor (optionally), calls
the auxiliary executable, and does the actual compilation.

5.1 Compilation process

Main executable of the compiler reads its output, converts it to SSA form, optimizes it,
converts it to low-level instruction graph with virtual registers, runs further
optimizations, allocates registers, reschedules instructions, converts the code to the
final assembly form and prints it out.

5.2 Parsing

The parsing is performed using lexer and parser automatically generated from grammar
descriptions. The lexer is generated by ocamllex, and the parser by ocamlyacc. The

16

programs are Objective
Caml equivalents of the
popular C lex/yacc tools.

The abstract syntax tree
generated by parsing is
then expanded. The
expansion algorithm is
very straightforward,
using depth-first
traversal of expression
trees, starting from the
left child. The most
difficult part is assigning
types to nodes of
function arguments and
return values. Full
compatibility with
RenderMan would
require significant
complexity (user
functions can be
polymorphic in both arguments and return values), and the exact algorithm is not
described in the specification. Therefore an ad-hoc solution is implemented with
special cases for each polymorphic standard library function, and user functions cannot
be polymorphic.

5.3 Function inlining

In all modern architectures function calls incur significant overhead. Sources of the
overhead include:

● Pipeline stalls due to the call and again due to return.
● Moving function arguments to designated registers and fetching the return value.

Stack is often in memory and significantly slower than registers.
● Saving and restoring registers across the function call.
● Inability to optimize across function calls. Even if the computations in the called

function could be optimized based on the arguments, it will not be possible without
complex inter-procedural optimizations.

The overhead is especially significant for very short functions, where it can be as much
as an order of magnitude higher than cost of the actual computations. Overhead in RPU
is relatively low, as there are no pipeline stalls (hardware switches to a different thread
instead of stalling), arguments and return value are in fast registers, and computations
can write directly to argument registers and read from return value register instead of
using additional move instruction. Overhead of saving and restoring registers and
inability to optimize across function calls are main sources of overhead.

Important part of the overhead is currently suboptimal code generation for function
calls. Moving computations across the call could reduce number of registers that need
saving, some variables could be assigned to stack registers instead of general registers,
and if multiple functions are called, variables that are not used between calls should

17

Figure 5.1

RSL Sources

Preprocessed RSL sources Stream of lexemes

Syntax Tree

Internal Representation
(not SSA)

Internal Representation
(SSA)

Assembly-level code
with virtual registers

Assembly-level code
with real registers

Final result

Main executable Auxiliary executable

cpp

stay on stack instead of being copied to general registers and back to the stack. Certain
ABI changes could also reduce overhead (more in section 7.3 ABI and performance).

The most common strategy for dealing with this overhead is inlining short functions. In
inlining, instead of calling a function, all computations it would perform are copied
directly into the caller. Inlining introduces a space-time tradeoff:

● Inlined functions save constant time per call, due to reduced overhead.
● Inlined functions save constant space per call, saving instructions to manage

arguments, return values, save and restore variables, and perform the actual call.
● Inlined functions cost space proportional to function size, to copy the actual

computations everywhere it is used.
Results of inlining can only be roughly estimated, as it is impossible to know in
advance what optimizations will be made possible by inlining. However, it is possible
to talk about two thresholds:

● First threshold – where inlining does not expand code size, as duplicating the
function body is simpler than generating function call code. For a function that takes
2 arguments, returns 1 value, and requires 2 variables to be preserved, it can be
estimated as 9 assembly operations:

● 2 movs to save variables

● 2 movs to to set function argument

● call to call the function

● return to return from the function

● mov to use the return value

● 2 movs to restore variable

This estimation is a very imprecise – it is possible that the return value can be used
directly without moving it to another variable, or that arguments can be computed
directly into the argument registers. Or the other way – function can take more than
9 operations, but it might be possible to optimize some of them away using
information available inside the caller.

● Second threshold – where inlining costs some space, but saves enough time to offset
it. It is very difficult to estimate this point, as we do not know how many cycles is
one byte worth. Different compilers use different thresholds for inlining, often
considering criteria different than just code size. For example IBM's AIX C++
compiler 7.0 uses threshold of 20 C++ statements by default. [AIX]

The RSL compiler inlines all standard library functions independent of their size. Most
standard library functions are below the first threshold, and even the most complex
implemented standard library function (component-wise vector clamp) expands to only
15 opcodes, what is still below the second threshold.

On the other hand on RPU there is one important reason for not inlining. Shaders are
executed in chunks of four that should stay synchronized for performance. If
synchronization is lost, RPU tries to restore it on function return. Even short functions
can have complex control flow and be likely to get desynchronized. If we call such
function, synchronization will be restored when it returns. On the other hand if we
inline it, synchronization will be lost for much longer (until the caller returns),
potentially resulting in performance hit much greater than the savings due to inlining.
This consideration does not affect functions like normalize that have no branches.

18

However functions like vector component-wise clamp with 6 branches are possibly
better called than inlined.

There are two possible ways to inline functions in the compiler:

● early inlining – inlining at intermediate representation level
● late inlining – inlining at assembly code generation
Early inlining is preferable, as is makes more optimizations possible, in particular
common subexpression elimination. The compiler currently does a combination of
early and late inlining. Functions that expand to simple operations without side effects
are inlined early, and functions with side effects (like trace) are expanded late.
Inlining of user function is not supported yet, and many functions that should be inlined
early are inlined late.

Early inlining together with common subexpression elimination removes many
redundant computations – for example calling length function of the same vector
many times is compiled to just single length computation.

5.4 Compilation of multiple functions

More than one function can be present in a source file (Figure 5.2). In fact separate
compilation is currently not supported as the virtual machine does not know how to use
more than one assembly file (the hardware does not have to keep this limitation), so the
only way to include multiple functions and shaders in a program is by having them in a
single input file, or in multiple files that are included in a single compilation using a
preprocessor.

Example of multiple functions

The following code:

 float add(float a,b) { return a+b; }
 float f() { return add(5,2) * 3; }
Gets compiled to:

 SUBROUTINE_ENTRY_add:
 add R0.w, R0.w, R1.w
 return
 SUBROUTINE_ENTRY_f:
 mov R0.w, 5.0
 mov R1.w, 2.0
 call SUBROUTINE_ENTRY_add push 0
 mul R0.w, R0.w, 3.0
 return

Figure 5.2

The files are assembled in order, so the default entry point (one that starts at PC=0) is
the first function. All entry points of function and shaders are marked by label
SUBROUTINE_ENTRY_(function name), and call instructions jump to labels of such
form. However if we want to start computation from a function or shader different than
the first one specified in the source, we need to know their addresses. The assembler
program saves addresses of all entry point labels to source_file_name.epts file. The test
driver or other application then reads contents of this file and can use the addresses to

19

set an alternative entry point of the computations (by setting PC register), or by setting
the shader address in the scene to the actual address.

Compilation makes only single pass over the sources. This means that functions should
be in such order that they are always defined before they are called, or the compiler
will not know their types and can compile wrong code. As an example – if 0 is passed
as an argument to a function that expects a vector, proper compiler behavior is casting
0 to a vector, and allocating a vector register for this argument. On the other hand if this
function was not seen by the compiler, it would incorrectly guess that a scalar argument
is expected, and pass the argument in a scalar register. To deal with this problem (and
with typos in function names), the compiler generates warnings if an user functions is
called before it is defined.

In the long term it would be better to modify compiler architecture to perform multiple
passes over the sources. However that would imply complex information flow between
two parts of the compiler, what would greatly complicate the interface and make bugs
more likely. For that reason it may be more practical to recode the Objective Caml part
of the compiler and merge it with Ruby part before switching to multi-pass
compilation.

6 Intermediate representation
The intermediate representation of a program in the compiler is based on “three-
address code”. The program is represented by a graph of instructions. Most of the
opcodes at intermediate representation level (Table 6.1) are responsible for
computations and they have form:

● operand target, source1, ..., sourceN (1 to 3 sources)
These operations do not have side effects, compute single value, and can be optimized
by by common subexpression elimination.

There are also a few other instructions like nop (do nothing), function call, function
return, and conditional jump.

Conditional jump is the only instruction that has two successors instead of one. There
are three supported conditions – greater-equal, greater-equal-0, and equal.

Instructions are not grouped into basic blocks and there are no jump instructions, as
each instruction can have any successor.

All variables are typed as float, string, color, vector or matrix. Vectors variables are
tagged as point, vector or normal, however this information is currently unused, and is
is not obvious what types should results of various vector operations have.

Currently matrices are not supported, and the code generator rejects any input that
contains matrix variables.

Opcode Semantics

nop Do nothing

mov A, B A B

neg A, B A−B

20

Opcode Semantics

rcp A, B A1/B

rsq A, B A1/ B

frac A, B, C A fracB

add A, B, C A BC

sub A, B, C A B−C

mul A, B, C A B⋅C

dp3 A, B, C A dotproduct B ,C 

xpd A, B, C A crossproductB ,C

tuple A, B, C, D AB ,C , D

call T, f, A, B, ..., Z Call function and assign T  f A, B , , Z 

return A Exit function or shader returning value of A

cjmp eq, A, B If A=B jump to second successor

cjmp ge, A, B If AB jump to second successor

cjmp ge0, A If A0 jump to second successor
Table 6.1

6.1 Single Static Assignment form

To simplify optimizations, internal representation is converted to Single Static
Assignment (SSA) form [SSA]. In SSA form every variable has exactly one definition.

SSA also requires that if some variable is used it must have been defined. All variables
are therefore initialized to 0 or (0,0,0) at beginning of the function (like in Java). This
initialization is almost always removed, but it can be a small performance hit in rare
cases. It would be possible to avoid this small hit by using special “X = undefined”
definitions which are compiled into empty code instead of “X = 0”, so that X would get
unspecified value if it was not initialized (like in most C/C++ compilers). This was not
done, as performance gain is negligible and it can make debugging significantly more
difficult.

It is possible that multiple definitions reach a certain point. In such case special φ-
definition are inserted at nodes different predecessors of which are reached by different
definitions. A φ-definition at a node defines a variable depending on an edge through
which the node was entered.

SSA is used by most modern compilers, as it makes many optimizations simpler, and
some advanced optimizations possible. The currently performed intermediate
representation level optimizations are copy propagation, opcode simplification and
common subexpression elimination.

Algorithm that converts to SSA computes set of definitions of a variable that reach
given point. If multiple definitions reach inside a node, but one of its predecessors has
only one outgoing definition, then such node gets a new φ-definition. If there is no such
node, terminate and replace all references to the variable by references to its only
definition that reaches given node.

21

It is easy to prove correctness of this algorithm. Assume that multiple definitions of a
variable reach some node. Let's follow some path through which one of the definitions
reached the node. As there is only one definition on the edge going out of the
definition's node, and the path ends with multiple definitions, definition count must
have increased somewhere. It could not have increased inside a node, as a node can
only pass the same definitions from its input to its output, or replaces them all with its
own definition. Therefore the definition count must have increased on a node's entry
point. As its predecessors on the path had only one definition going out, the algorithm
could not have terminated, what breaks the assumption.

Termination proof is also easy. As a node with φ-definition for the variable cannot have
multiple definitions reach inside it, we can only put a φ-definition for the variable on a
node that does not have one yet, and there is finite number of nodes, so the algorithm
finishes in finite number of iterations.

6.2 Copy propagation

Copy propagation is an optimization that removes unnecessary copy operations. It also
propagates constants. In addition to making code simpler, it makes further
optimizations possible – propagating constants enables the compiler to perform
constant folding, and can make new common subexpressions available (for example if
copy propagation replaces B by C, A + B and A + C become equivalent).

For sources in SSA form copy propagation is particularly simple:

● For every B  A operation in the code:

● Replace all B by A and drop the operation.
The compiler also treats floating point loads and casts from float to vectors and colors
as copy operations.
Correctness proof for this optimization is very straightforward, and it can serve as an
example as most SSA-based optimizations can be proven in similar way. The proof
only deals with copy propagation, but it can easily be extended to float load and cast
propagation.

Let's assume that a function is in SSA form, and there is a node B  A . If B always
equals A at every point where it is used, then the optimization is trivially correct, so
let's only consider the case where there is a reachable point where B is used, but
where B has different value than A .

As B is by SSA assumption defined at each point where it is used, B  A must have
been visited at least once. As we assumed that B≠A it also means that node A⋯
was visited between the last visit to B  A and visit to the node that uses B . So it
must be possible to reach a node that uses B from A⋯ without going through
node B  A .

As each variable must be defined before it is used, and it is possible to reach B  A ,
then it must be possible to reach A⋯ from the entry without going through
B  A .

Taking the two together, as it is possible to reach A⋯ from the entry without
visiting B  A , and it is possible to reach a node that uses B from A⋯ without

22

visiting B  A , then it is possible to reach a node that uses B from the start node
without visiting B  A . As we assumed that each variable is defined before it is used,
we get a contradiction. Therefore, the copy propagation algorithm must be correct.

Analogously to copy propagation algorithm, most analyses and optimizations based on
SSA are inherently global and do not consider the control and data flow explicitly. All
relevant flow information was already extracted during conversion to SSA form.

One kind of propagation that is not performed yet is propagating φ-definitions all
arguments of which are identical. Newly generated φ-definitions always have different
arguments, however copy propagations or eliminating unreachable branches can make
them identical.
A somewhat contrived example of such situation would be:
 if (x > 0)
 y = 2;
 else
 y = 2;
 z = 1/y;

which gets compiled to equivalent of:
 if (x > 0)
 y0 = 2;
 else
 y1 = 2;
 y2 = φ(y0, y1);
 z = 1/y2;

What after propagation becomes:
 if (x > 0)
 {}
 else
 {}
 y2 = φ(2, 2);
 z = 1/y2;

And as the conditional has two identical outgoing links it becomes:
 y2 = φ(2);
 z = 1/y2;

Simplifying φ-definitions would let the compiler evaluate z as 0.5 at compile time,
what currently needs to be done at run time. Forwarding and constant folding at
assembly level are not sufficient in this case, as assembly mov_rcp instruction has
side effects and cannot be easily optimized.

6.3 Opcode simplification and constant folding

Opcode simplification replaces complex opcodes by simpler ones. Constant folding
performs computations that can be completed at compile time. The primary reason for
these optimizations is not directly improving performance, as in current architecture

23

most opcodes have the same cost, but enabling further optimizations. If a complex
opcode can be replaced by a constant load or a variable copy, it can be forwarded and
the opcode is then eliminated completely, what reduces computations and decreases
register pressure. Branch instructions can be simplified if the condition is always true
or always false, what often makes some code unreachable. Such code is then
eliminated, and with fewer possible execution paths the compiler is often able to find
more invariants and use them in further optimizations.
Opcode simplification and constant folding are run together. Each opcode is optimized
individually. It is matched against a set of known patterns. In case of a match, it is
replaced by a simpler opcode. Most commonly the replacement is a mov operation
(constant load or variable copy), which is immediately propagated and dropped.
Among the matched pattens are addition and subtraction of 0, multiplication by 1, 0, or
-1, and any computation all arguments of which are constant. Opcode simplification
can also remove branches if either condition is known in advance, or both branches
point to the same code (with the same φ-arguments).
Example of opcode simplification in action:
 y = 1;
 z = x / y;

What gets compiled to equivalent of:
 y = 1;
 a = rcp(y); /* rcp(y) means 1/y */
 z = x * a;

Due to constant propagation is becomes:
 a = rcp(1);
 z = x * a;

Then by opcode simplification:
 a = 1;
 z = x * a;

What automatically triggers propagation of a:
 z = x * 1;

And the final opcode simplification:
 z = x;

And then x is propagated everywhere where z was, and the whole fragment code is
removed.
As a purely local optimization, it does not depend on the code being in SSA form.
Similar optimization is performed also on the assembly-level code, however with
different rules as the opcodes are different.
Opcode simplification does not preserve behavior if non-finite numbers are present. For
example multiplying a variable containing infinity by a constant 0 returns not-a-number
without opcode simplification, but 0 with it. Such IEEE 754 incompatible behavior is
common in other compilers, like gcc with -ffast-math command line option.

6.4 Common Subexpression Elimination

Common Subexpression Elimination avoids some duplicated computations, by

24

replacing some of the repeated computations by copy operations.
If the same computation is performed multiple times, and one of the points at which the
computation is performed is always reached before another point performing the same
computation, then the result is forwarded instead of being recomputed. After
forwarding the code is simplified and Common Subexpression Elimination is repeated.
Only weak form of Common Subexpression Elimination is implemented (Figure 6.1).
Computations are not forwarded unless their results are guaranteed to be in the same
register. The algorithm could be modified to handle such cases.

Example of Common Subexpression Elimination
Before After

START

a = b + c

c > 0 d = b + c

e = b * c f = b * c

g = b + c

h = b * c

...

START

a = b + c

c > 0 d = a

e = b * c f = b * c

g = a

h = b * c

...

In the example, b+c and b*c are computed multiple times. Recomputation at nodes
d=b+c and g=b+c can be eliminated as b+c is guaranteed to be in variable a when
they are executed. On the other hand h=b*c cannot be simplified, because while
b*c is always computed before the node is executed, results are not guaranteed to be
in single register, and depending on the path they are in either e or f.

Figure 6.1

6.5 Other optimizations

SSA form makes many advanced optimizations possible. Most of them perform
analysis of whole procedure (or whole program), and optimize using information
obtained in the analysis. Such optimizations can efficiently deal even with big
programs with complicated control flows. The compiler currently implements only a
limited number of them, focusing instead on low-level optimizations. This is adequate
for small programs with simple control flow, but for long-term viability of the project,
it is important to keep an option of easily implementing more advanced optimizations.

Possible SSA-based optimizations include:

● Sparse Conditional Constant Propagation [SCCP] – simultaneously performs
Constant Propagation and Dead Code Elimination. In some cases it can be
significantly stronger than performing these two optimizations separately.

● Global Value Numbering [GVN] – reduces redundancy by analysis of equivalences

25

between variables. It removes more redundancy than Copy Propagation and
Common Subexpression Elimination.

● Partial Redundancy Elimination [PRESSA] – eliminates expressions that are
redundant on some but not all code paths and performs limited code motion. Partial
Redundancy Elimination is also possible without SSA [PRE], but is less powerful.

7 Code generation
The assembly-level code is generated in the following way:

● Each node of the program graph generates a small graph with appropriate assembly
instructions as nodes.

● Any edges that lead to φ-definitions are converted into mov instructions that
perform necessary assignments. This step can introduce new temporary
variables in some cases.

● The links out of the small graphs are represented by placeholder values
“next” or “then”/”else” in case of cjmp nodes.

● After every node generated its own graph, theses graphs are connected. Placeholder
links are replaced by links to entry instructions of appropriate graphs. This two-
phase generation is necessary, as the code can contain cycles in which we must
generate nodes first and connect them later.

● Entry instruction of the entry node becomes subroutine's entry instruction.
Late inlining is performed during this phase. A call instruction is replaced by a graph
that implements appropriate computations.

Instructions at this level are very close to instructions of the final assembly. The main
differences:

● Virtual registers are used instead of physical registers.

● The program is represented as a graph, which will be later converted to linear
output.

● call opcode at this level handles variable saving/restoring automatically.

7.1 Application Binary Interface

Programs for RPU can consist of multiple parts (shaders, functions) that need to
communicate with each other. This requires a well-defined binary interface, which is
not fully determined by the hardware.

The most important parts of binary interface are register use patterns, calling
convention, and memory layouts of various objects (which are not defined yet).

Registers R0-R14 are divided into vector part (xyz) and scalar part (w). From compiler
point of view there are 15 scalar registers (R0.w–R14.w) and 15 vector registers
(R0.xyz–R14.xyz), and there is no relation between the two sets.

R15 register is used globally as a “junk” register. All operations that want to discard
computed value assign it to one of R15's components. In particular this refers to:

● conditional jumps – comparison can only be implemented as a subtraction, and R15
becomes a target.

● reciprocal and reciprocal of square root computations – opcodes that perform such

26

computations produce two values. The final value is saved in S register, and the
intermediate value is saved in a normal register. Usually only the value saved in S
register is relevant, so R15 is used as a target to ignore the intermediate value.

Four components of S register are used as separate special scalar registers. They are
used as temporary storage of results of rcp/rsq operations.
HIT, HIT_TRI and HIT_OBJ registers are treated more like global variables than like
other registers.

7.2 Calling Convention

Functions take arbitrary number of arguments and
return at most one value.

The arguments are moved to predetermined registers
before the call. Vector/color arguments are put into
registers R0.xyz, R1.xyz and so on up to R14.xyz.
Float/string arguments are put into registers R0.w, R1.w
and so on up to R14.w. (Figure 7.1)

Vectors have x component in x part, y component in y
part and z component in z part. Colors have red
component in x part, green component in y part and
blue component in y part. Strings are represented by
hashes – currently first 24 bits of MD5 hash, however
this should be adjusted to match precision of the
hardware registers.

Caller is fully responsible for preserving any registers it wants preserved – the called
function is free to modify all of them.

Surface shaders take hit information from HIT and HIT_TRI registers, and return the
color information (Ci) in R0.xyz and opacity (Oi) in R1.xyz. Details of object memory
layout are not specified.

Light shaders are not supported yet. A single point light source has location C0.xyz, and
color C1.xyz. This definition is sufficient for testing surface shaders.

Interface to other types of shaders is not defined, as they are not implemented.

Complete ABI specification must wait until light and imager shaders are implemented,
with support for multiple light sources, and applications that generate scene data are
developed.

7.3 ABI and performance

Some aspects of ABI can significantly affect performance. One of them is
responsibility for saving registers across function calls. Registers can be:

● “callee-saved” – called function is not allowed to change them unless it restores
the original values before return

● “caller-saver” – called function can overwrite them at will, if caller wants their
values to be preserved, it must save them and restore after function call

● Registers used for passing arguments or returning values are implicitly caller-
saved.

27

Register allocation for:

color f(
 vector a;
 color b;
 float c
) { ... }
is:

● a – R0.xyz
● b – R1.xyz
● c – R0.w
● return value – R0.xyz

Figure 7.1

Saving is necessary if and only if both caller and callee use the same register. As
compiler does not know it compiling either caller or callee, unnecessary saving can be
introduced in both cases. The issue is most pronounced in architectures with many
registers (like RPU), as ABI can force saving even when there are enough registers for
both functions.

Most architectures use both caller-saved and callee-saved general registers. For
example in DEC Alpha [ALPHA] there are 7 callee-saved, 12 caller-saved, 6 argument
passing and 1 return value registers.

If ABI contains both kinds of registers, compiler can reduce number of register saving
by using registers from either set. If function never calls other functions, it can freely
overwrite caller-saved registers. On the other hand if function calls many other
functions, it can place long-lived variables in callee-saved registers, saving only once
instead of once for function call.

Such mixed ABI are typically better than purely caller-saved ABI, but make register
allocation more complex. Some aggressively optimizing compilers like Intel C++
Compiler [INTEL] use interprocedural analysis to make decisions on saving registers
instead of relying on fixed ABI, what improves efficiency at cost of significantly higher
compiler complexity.

In case of RPU it might also be possible to have different ABI for different kinds of
shaders – most calls are between subroutines of different kind (main shader calls
surface shaders, surface shaders call mostly light shaders and normal functions, small
functions are inlined so main shader, light shaders and normal functions would rarely
call further functions), and it should be possible to make surface shaders use one kind
of registers, and other shaders and normal functions use a different kind, with saving
necessary only for calls to functions of the same kind, and when number of registers
needed is very high.

Currently the compiler uses the simplest possible ABI, with only caller-saved registers.
Aggressive inlining reduces effects of function call inefficiency.

7.4 Assembly-level optimizations

The following optimizations are performed at assembly level:

● Opcode simplification and constant folding – corresponding to the same operation
performed at SSA level. At assembly level it is possible to take advantage of
features like source modifiers, that were not represented at SSA level.

● Forwarding – a limited version of copy propagation. Most copy operations are
already removed at SSA level, however new copy operations are introduced during
conversion to assembly or by opcode simplification. One important case is
forwarding of S subregisters.

● Liveness analysis and dead computation elimination.
● Register allocation tries to allocate registers in a way that results in better code, so it

can be considered an optimization.
● Useless copy elimination (copying from register to the same register) and removing

nop opcodes.
● Instruction scheduling.

28

7.5 Opcode simplification and constant folding

Opcode simplification and constant folding is very similar to such optimization on
intermediate representation level. Operations are replaced by simpler equivalent
operations, constants are folded, conditional branches are simplified etc.
Two most important groups of operations that are simplified at this step are
optimizations of functions that were inlined late (what can trigger further
optimizations), and simplification by introduction of source modifiers.
For example the following computation in intermediate representation:
 mul X, A, 2
 mul Y, B, -4
 sub Z, X, Y
cannot be optimized on SSA level. It is converted to assembly-level code:
 mul X, A, 2
 mul Y, B, -4
 add Z, X, -Y
which can be simplified to:
 mov X, 2*A
 mov Y, -4*B
 add Z, X, -Y
and then by forwarding converted to:
 mov X, 2*A
 mov Y, -4*B
 add Z, 2*A, 4*B
What (assuming X and Y are not used anywhere else) gets optimized by dead code
elimination to:
 add Z, 2*A, 4*B

7.6 Forwarding

Forwarding is a limited version of copy propagation. Instead of global “find a copy,
replace everywhere”, a more complicated and less powerful algorithm is used, which
however does not depend on the code being in SSA form.

As more powerful copy propagation was performed at SSA level, forwarding is used
mostly to optimize code generated by late function inlining, in particular to forward
subregisters of S, and to assemble mad and dp3_rsq instructions from simpler
instructions. Assembling of mad and dp3_rsq can be considered a separate
optimization, but it is run together with normal forwarding.

The algorithm iterates two steps:

● Propagate assertions about values of variables at edges in the program

● For each node, use assertions for that node to simplify its opcode if possible. If any
opcode was simplified, start another iteration.

Three kinds of assertion are currently used. The most important is “A is B” assertion,
which means “A equals B at this point and it uses of A should be replaced by uses of B
if possible”. Other assertions are “A is B multiplied by C” and “A is dot product of B
and C”, which are used only to merge mul followed by add into mad, and dp3
followed by mov_rsq into dp3_rsq.

29

If copy operation from B to A is found in the code, “A is B” is added at the outgoing
edge of this operation. Such assertions are not generated if B has a register allocated to
it, as forwarding such variables can increase their live ranges and easily introduce new
conflicts. No such precautions are necessary in case of A, as its live range can only be
reduced by replacing its uses with uses of B.

Assertions that are present on each incoming edge of the node and are not broken
inside the node (if either A or B is modified, “A is B” assertion must be dropped), are
propagated to all outgoing edges of the node.

We can follow the algorithm on the following code fragment that multiplies vector B by
length of vector A:

 dp3 C, A, A ; C = Length of A squared
 mov_rsq R15.x, C ; S.x = 1 / Length of A
 mov D, S.x
 mov_rcp R15.y, D ; S.y = Length of A
 mov E, S.y
 mul F, B, E ; F = B * Length of A

There are two mov instructions and one dp3 that generate assertions:
 dp3 C, A, A
 mov_rsq R15.x, C ; (C is dot product of A and A)
 mov D, S.x ; (D is S.x)
 mov_rcp R15.y, D
 mov E, S.y ; (E is S.y)
 mul F, B, E

Propagation is very straightforward as there are no branches, and none of A, C, D, E,
S.x, S.y is modified on path from their origin to end of the fragment:
 dp3 C, A, A
 mov_rsq R15.x, C ; (C is dot product of A and A)
 mov D, S.x ; (C is dot product of A and A; D is S.x)
 mov_rcp R15.y, D ; (C is dot product of A and A; D is S.x)
 mov E, S.y ; (C is dot product of A and A; D is S.x; E is S.y)
 mul F, B, E ; (C is dot product of A and A; D is S.x; E is S.y)

Having finished assertion propagation, we can now use the assertions for code
simplification:
 dp3 C, A, A
 dp3_rsq R15.x, A, A ; dp3 merged with mov
 mov D, S.x
 mov_rcp R15.y, S.x ; D replaced by S.x
 mov E, S.y
 mul F, B, S.y ; E replaced by S.y

This optimization by itself does not simplify the code, but it allows dead code
elimination remove computation of C and assignments to D and E.
 dp3_rsq R15.x, A, A
 mov_rcp R15.y, S.x
 mul F, B, S.y

Even if these instructions were not eliminated, the code already became faster, as

30

computation of F now requires only 3 steps instead of 6, and computation of C, D and E
can be done in parallel, without stalling the pipeline.

Assertions also support source modifiers, so “A is -2*B.yzx” is a valid assertion.

There is one simple kind of assertions that could be used but is currectly not – “A is-
x/y/z-field-of B”. They would make it possible to simplify code like:

 mov B, A.x
 mul D, C, B
to:
 mul D, C, A.x

7.7 Dead code elimination

Dead code elimination removes code which does not contribute to the results. There are
two kinds of dead code – unreachable code, which due to graph-based representation of
program is automatically removed when it becomes unreachable, and code which only
computes “dead” variables and has no other effects, which is removed by this
optimization.

Code liveness and variable liveness are computed together. Code which returns values
from function or has side effects (like control flow, call, and trace) is
unconditionally live. Code is also live if it modifies a live variable.

If code is dead, set of variables that are live at its entry is equal to set of variables that
are live at its exit (it is considered equivalent to nop). If code is live, set of variables
that are live at its entry is equal to set of variables that are live at its exit minus
variables defined by the node, plus variables used by the node.

Computations start with all code and all variables considered dead, and increase sets of
live code and variable until reaching fixed point. Code that is marked dead at that point
is eliminated. Information on live ranges of variables is saved, as it is also used by
register allocation and code output. In current ordering of optimizations it does not
need to be recomputed.

1: a = 1

2: b = 2

8: a = b + 1

5: b = a + 1

4: if c > 0

9: return d

...

6: c = c + 1

then

else

7: d = d + e

3: d = 0

Figure 7.2

An example (Figure 7.2) is fragment of a function, including a simple loop (... denotes

31

rest of the function).

Five variables are used – a, b, c, d, e. At first two nodes are live and two variables are
live at their entries. Node 4 affects control flow and uses c, so c must be live at its
entry. Node 9 returns d from function, so d must be live at its entry. (Figure 7.3).

{}
1: a = 1

{}
2: b = 2

{}
8: a = b + 1

{}
5: b = a + 1

{c}
4: if c > 0

{d}
9: return d

...

{}
6: c = c + 1

then

else
{}

7: d = d + e

{}
3: d = 0

Figure 7.3

 Liveness is propagated in direction opposite to control flow. When fixed point is
reached (Figure 7.4), nodes 3, 6, 7 are live, while nodes 1, 2, 5, 8 are dead, as are
variables a and b.

{c,e}
1: a = 1

{c,e}
2: b = 2

{c,d}
8: a = b + 1

{c,d,e}
5: b = a + 1

{c,d,e}
4: if c > 0

{d}
9: return d

...

{c,d,e}
6: c = c + 1

then

else
{c,d,e}

7: d = d + e

{c,e}
3: d = 0

32

Figure 7.4

Dead instructions 1, 2, 5, 8 are then be dropped (Figure 7.5).

{c,d,e}
4: if c > 0

{d}
9: return d

...

{c,d,e}
6: c = c + 1

then

else

{c,d,e}
7: d = d + e

{c,e}
3: d = 0

Figure 7.5

8 Register allocation
Two important parts of an optimizing compiler are register allocation and instruction
scheduling. It is possible to run either of them first, and a few experimental algorithms
even run them together, however the last option leads to significant added complexity
and is rarely used.

There is a tradeoff between the orders:

● If register allocation is run first, it can introduce unnecessary instruction
dependencies that make instruction scheduling more difficult.

● If instruction scheduling is run first, it is likely to significantly increase register
pressure, what can lead to register spills (copying contents of some of the variable
into memory instead of registers and reloading it later), or even make the code
uncompilable.

As spills are considered much more expensive than pipeline stalls, most compilers run
register allocation first. In case of the RSL compiler it is significantly better to run
register allocation first, as:

● It is not possible to spill, so increased register pressure can make the code
uncompilable.

● Stalls do not actually stop computations, but only force a switch to another thread.
Excessive thread switching should be avoided, but cost of suboptimal scheduling is
very small compared to most other modern architectures.

● If register pressure (number of variables that are alive at any given time) is low,
register allocation will efficiently balance register usage, and introduce few
additional instruction dependencies.

● If register pressure is high, register allocation is likely to introduce many additional
dependencies. However in such case increasing the register pressure any further is
very likely to make the code uncompilable.

Register allocation algorithm is based on graph-coloring [COLOR], which is used by
most modern compilers. The problem of allocating a large number of variables to small
number of registers can be reformulated as follows:

33

● Compute information on variables' live ranges (locations between opcodes at which
their values must be remembered). If variables are live at the same type they cannot
use the same register.

● Compute enemies and friends of each variable.
● “Enemies” are variables which must not use the same registers (or

overlapping registers if architecture supported them). Variables become
enemies if they can use registers of the same type and at any point are
simultaneously alive.
Correct allocation must fulfill all “enemy” constraints.

● “Friend” are variables which should share the same register if possible. In
current implementation a friend is a variable which uses registers of the same
type, is not an enemy, and there exists a “mov A, B” instruction somewhere
in the shader, such that one of the variables in a target, and the other is a
source.
“Friends” constraints do not affect correctness, and only affect performance
of generated code.
As register sets for scalars and vectors are disjoint, scalars can be neither
enemies nor friends of vectors.

● Create a graph in which:
● Every variable gets a node. The variables which are already allocated (like

function parameters etc.) are not represented.
● There is an edge between nodes corresponding to every pair of enemies.

● Color the graph using no more colors than the number of available registers such
that:

● Every variable gets a register of the correct type
● If there is an edge between two variables, they get different registers

Graph coloring using limited number of colors is NP-Hard [NP], however a very
efficient algorithm exists that works correctly in most real world situations.

The algorithm is based on the following observation:

● If a node X has fewer edges than there are available colors, then if we can color the
graph at all, then we can do it by coloring the graph without node X, and afterwards
selecting a color for X, what is always possible as its neighbors must have left at
least one color unused.

The version used in the RSL compiler generates the order of coloring in the following
way:

● Find a node with fewest edges (variable with fewest conflicts), remove if from the
graph and add to allocation list

● If there are multiple variables with the same number of conflicts, select one
with fewest “friends”

Selecting nodes with fewest edges first is simply part of the graph coloring
algorithm.
Selecting nodes with fewest friends first (so that nodes with most friends are
allocated earlier) is a heuristic that sometimes improves allocation. If variables with
multiple friends are allocated first, their friends try to use the same register if
possible. On the other hand if variables with few friends were allocated first, they

34

would try to use different registers to avoid register overcrowding, even if they do
not conflict. Variables with multiple friends would then usually be unable to share
allocation with more than one of their friends.

● If we were able to remove all nodes from the graph, and number of conflicts of each
removed variable was always lower than number of the registers of the appropriate
type (that is less than 15 conflicts), then allocation is always possible. Otherwise it
might be impossible to allocate correctly, but we do not know it at this point.

● Go over the list of variables in reverse order (the last added – that is the most
difficult – first), and allocate each variable to a register that is not used by any
variable that conflicts with it. If there are multiple such registers use the following
heuristics:

● Use allocation that is shared with most “friend variables”.
● If the first criterion did not select a single register, use one with the fewest

variables allocated to it. Balancing register usage makes instruction
scheduling easier.
Each friend with which allocation is shared saves at least one “mov”
instruction, while balancing register usage has unknown and usually smaller
effect on instruction scheduling. As the first effect is typically much stronger,
it is considered first.

● If there are multiple candidates with the same score, take one with smallest
register number. This step makes the allocator deterministic and simplifies
compiler debugging.

9 Instruction scheduling
Like register allocation, optimal instruction scheduling is also an NP-Hard problem
even under significantly simplified assumptions [SCHED]. The algorithm used is
“forward list scheduling” of basic blocks. Most compilers use similar algorithm for
scheduling, differing only in the scheduling direction (forward or backward), use of
various methods to merge basic block into larger blocks, and different criteria for
selecting scheduled instruction from list of candidates.

A “basic block” is a sequence of instruction that are either executed all in specified
order, or none of them is executed. This means no instruction except for the first can
have predecessors outside the block (or more than one predecessor), and no instruction
except for the last can have successors outside the block (or more than one successor).

As the compiler does not use basic blocks, but the program graph nodes are individual
instructions, the first stage of scheduling algorithm must be basic block consolidation.
Instructions that are not “reschedulable” are forced to have own basic blocks. Non-
reschedulable instructions are conditional jump, function call, return, and trace
instructions. Links to the first and from the last instruction of each block are saved at
this point.

As the next step each basic block that contains more than one instruction is rescheduled
independently. After rescheduling, basic blocks are reconnected into a complete
program, at which point information on basic blocks is thrown away.

The core of instruction scheduling is scheduling of a single basic block. The algorithm
works as follows:

● Directed graph showing dependencies between instructions is built. Each instruction

35

in the graph has a node, and an arrow exists from A to B if B cannot start before A
finishes. There are three kinds of dependencies:

● Real dependencies (“Read After Write”) – A writes to register and then B
reads from that register.

● “Write After Read” dependencies – A reads from a register and then B writes
to this register. A and B cannot be reordered or the value read by A would be
incorrect.

● “Write After Write” dependencies – A writes to the register and then B writes
to the same register A and B cannot be reordered or the register would have
different value in the end. Writes to junk register (R15) are not considered, as
its final value is irrelevant.

● Every variable without other links gets a link to the “sink node”.
These dependencies contain complete information which instructions can and which
cannot be reordered.
The second and the third kind of dependencies do not represent real data flow
dependencies and could be avoided by different register allocation. As the register
allocation tries to balance register use, it can be expected that few such unnecessary
conflicts will be introduced unless register pressure is very high.

● Start the scheduling algorithm
The algorithm tries to track which instructions can be scheduled on which processor
cycle, starting from the cycle in which the scheduled block was entered, and uses a
greedy algorithm for scheduling. Some simplifying assumptions are used. Memory
and trace instructions are assumed to have constant latency. It is assumed that when
block is entered all prior computations are finished.
A few concepts help understanding the applied heuristics. An “optimal scheduling”
is any scheduling of so far unscheduled instructions which takes the fewest cycles in
our model of processor. Instructions are “critical” if one of them must be scheduled
immediately in any optimal scheduling. Every time a non-critical instruction is
selected when critical instruction was available, at least 1 cycle is lost. In current
model the loss is always exactly 1 cycle.
It is possible that only non-critical instructions are available, in which case selection
of any instruction (and even stalling a cycle) is optimal. It typically happens when
all instructions from long computations are waiting for dependencies, and one or
more instructions from shorter computations are available.
If some instruction is always issued when available, the “worst scheduling” can be
no worse than (number of instructions – 1) longer than an optimal scheduling (-1
because the last instruction issued must be critical). This happens only in an unlikely
case when at every step a critical instruction was available but non-critical one was
issued. In other words, the worst scheduling is less than 2x longer than an optimal
scheduling.
The “worst scheduling” always issues some instructions when available, so it is still
significantly better than not scheduling. In non-scheduled code it is very likely that
processor must wait for the next instruction when it could execute some other
instruction. In the most pathological case almost every instruction must wait number
of cycles equal to instruction latency, while a different instruction is always
available (then, if instruction latency is 10, the worst case of non-scheduling is close
to 10x longer than optimal).

36

The heuristics try to avoid taking non-critical instructions when critical instructions
are available.

● Initialize cycle counter to 0
● As long as there are any instructions that are not scheduled:

● Check if there is any instruction, all dependencies of which have finished
executing.

● If not, increase cycle counter by 1 and restart. As the dependency
graph is acyclic, we can always schedule all instructions if we wait
long enough.
This case corresponds to situation where processor cannot execute
any instructions and must switch to a different thread.

● Some instructions can be scheduled. This case corresponds to situation
where some instructions can be executed by processor.

● If there are multiple possible instruction to schedule in current cycle,
compute for each instruction length of the longest latency-weighted path in
the dependency graph from the instruction to the sink node (“path”), and
keep only these instructions for which path is not shorter than path of some
other candidate (it is possible that a blocked instruction has even longer path,
but they are not considered).
Length of a path is number of cycles during which computations of this path
are performed.
Thus difference between optimal scheduling length and path of a node is
number of computation cycles during which, under optimal scheduling,
computations of the path are not performed.
If nodes are critical, one of them must start computations immediately.
Situations where computations must begin immediately but are later allowed
to wait many cycles are unusual.
By this reasoning, instructions with the longest paths are significantly more
likely to be critical than instructions with even slightly shorter paths.
In practice, always issuing instruction when possible and the longest path
heuristics together are responsible for almost all optimization. Further
heuristics typically have only a minor effect.

● If there are still multiple candidates, keep only those with most instructions
directly depending on them.
Instruction on which multiple computations depend is more likely to be
critical than instruction on which fewer computations depend, when their
longest paths are the same.

● If there are still multiple candidates, keep only those with biggest latency.
Often computation is tree-like, and there are more instructions available
earlier in the block than later. This is a problem, as at first there are available
instructions but no free slots, while later there are free slots but no available
instructions. Scheduling fewer longer instructions early, and more shorter
instructions late sometimes improves performance.

● Select first of the candidates (to make the algorithm deterministic), remove it
from the list of instructions to be scheduled and record the cycle when it
finishes execution.

37

● Increase cycle counter by 1.
Scheduled instructions are connected linearly inside each basic block.

The basic blocks remember successors of the original last instruction. They are
converted to links to the first instruction of each successor's basic block, and attached
to the last instruction. Reverse links are recreated in analogous way.

9.1 Instruction scheduling example

Figure 9.1 shows an unscheduled block of 6 instructions and dependency graph for it.
The example assumes that add takes 3 cycles, while mul and dp3 take 5 cycles.

Without scheduling, the block takes 16 cycles to complete.

add X, A, 1

dp3 Y, B, B

mul Z, X, Y

dp3 D, A, B

mul E, A, 5

add F, D, E

add X, A, 1

dp3 Y, B, B

mul Z, X, Y

dp3 D, A, B

mul E, A, 5

add F, D, E

END

3

3

5

5

5

5

Figure 9.1

Instructions have following weights:

Instruction Latency of longest path Direct successors Latency

1: add X, A, 1 8 1 3

2: dp3 Y, B, B 10 1 5

3: mul Z, X, Y 5 0 5

4: dp3 D, A, B 8 1 5

5: mul E, A, 5 8 1 5

6: add F, D, E 3 0 3

Allocation proceeds as follows:

Cycle Newly available Available variables Candidates Selected instruction

1 A, B 1, 2, 4, 5 2: dp3 Y, B, B

2 A, B 1, 4, 5 4: dp3 D, A, B

3 A, B 1, 5 5: mul E, A, 5

38

4 A, B 1 1: add X, A, 1

5 A, B None Stall

6 Y A, B, Y None Stall

7 D, X A, B, D, X, Y 3 3: mul Z, X, Y

8 E A, B, D, E, X, Y 6 6: add F, D, E

9 A, B, D, E, X, Y None Stall

10 A, B, D, E, X, Y None Stall

11 F A, B, D, E, F, X, Y None Stall

12 Z A, B, D, E, F, X, Y, Z None End

Execution time was reduced from 16 to 11 cycles.

9.2 Special operations in scheduling

There is also limited support for rescheduling instructions that modify S registers.
During conversion from intermediate representation to assembly, generated
mov_rcp/mov_rsq instructions are assigned to four different S subregisters in a
round-robin fashion. This means that a result of one special operation can be forwarded
across another special operation as long as it uses the a different S register, and it also
makes it possible to reschedule mov_rcp/mov_rsq operations.

Naive round-robin allocation during code generation can lead to less than optimal code
if there are many rsq/rcp operations in the shader, and possibly generating virtual S
registers and allocating them by the graph-coloring based register allocator would lead
to better results. As there are only 4 available registers, spilling to standard scalar
registers should also be implemented. If such register allocation was implemented, it
should probably be run before the main register allocation phase, as it can increase
register pressure of standard scalar registers.

This is only a problem in code that contains more than four rcp/rsq operations close to
each other. Common subexpression elimination can often eliminate some of them – for
example if length and normalize are called on the same vector, rsq will only be
called once.

9.3 Instruction pairing

Due to lack of virtual machine support for instruction pairing, the scheduler issues only
one instruction per cycle. The algorithm can be straightforwardly modified to support
instruction pairs. The necessary modifications are:

● When finding candidates for scheduling verify that they can be scheduled together
with the instructions have already been scheduled in current cycle.

● Mark the instructions scheduled in a single cycle as pairs.
● Do not automatically increase cycle number after successfully scheduling an

instruction.

39

9.4 Other possible improvements of the scheduling algorithm

A simple modification of the scheduling algorithm would be including conditional jump
instruction directly after the next block in the dependency graph. After conditional
jump the thread switch is unavoidable, so our priority should be making all registers
used in the condition check available when cjmp is executed to avoid second thread
switch just before the condition check. Simply marking cjmp reschedulable, but not
scheduling it until everything else was scheduled would be most likely sufficient.
Another simple improvement would be passing information between blocks. After a
block is scheduled, information is available on how many cycles it takes before each
register can be used. This information could be used to schedule successor blocks
better. If the code does not contain loops, it is easy to select order of block scheduling
in which such information is always available. As shaders typically contain no or very
few loops, scheduling quality could be greatly improved.

10 Code output
After the code has been generated, registers allocated, and the instructions scheduled,
the only step left is printing the final assembly code. The printing is not completely
trivial, as the program representation in memory is different from the final
representation. Two main differences are:

● The program is represented as a graph, while the generated assembly code must be
linear.

● call opcode at this level handles variable saving/restoring automatically.

Expanding calls uses information on live variables before and after the call. If a
variable is alive before and after the call (that is – it should be preserved), then it is
copied to the stack before the call, and restored after the call. The push size is the
smallest size required to push all saved variables out of the called function's visible
stack space.

Saving and restoring is done so late because various optimizations can introduce and
remove variables, and change variables' live ranges, and it would be difficult to modify
the saving/restoring code accordingly to keep it correct and efficient. On the other hand
performing saving and restoring so late makes some optimizations impossible. One
such optimization would be forwarding of variables on the stack, so copies from the
stack into registers can be avoided. Another optimization would be computing directly
onto the stack, instead of computing into registers and then copying them onto the
stack. Third optimizations missed is avoiding unnecessary restores followed by saves if
multiple function calls are performed in sequence without branches between them.

The algorithm used to convert program graph into linear assembly performs a depth
first search, by printing opcode label followed by opcode and jump to the next label. If
jump to a label is followed by the label, it is removed from the generated text. Also, if a
label is never referred, it is removed from the text before printing. This does not change
the semantics however it can make assembly more readable.

11 Implementation issues

11.1 Testing

Optimizing compilers are very complex programs, and subtle interactions between

40

optimizations can easily lead to bugs that occur under rare conditions, and can easily
stay undetected for a long time. As the RSL compiler for RPU does not have a benefit
of large user base of testers, the only way of assuring low bug rate is extensive
automatic testing.

Majority of test are verifying the whole setup, starting from RenderMan Shading
Language files as input, compiling them, running on a virtual machine, and finally
verifying the output. Bugs at any phase – parsing, code generation, optimizations, or
virtual machine execution – can make the whole process fail. Bugs in the tests are also
possible.

Tests (example in Figure 11.1) are implemented in Ruby using unit-testing framework
Test::Unit, which is very similar to the well-known JUnit testing framework for Java.
The typical testing scenario is:

● A single small snippet of RenderMan shading language code containing 1 or 2
functions is saved.

● The code is preprocessed (optionally) and compiled to assembly.
● The code is assembled.
● The virtual machine runs the code, using arguments specified in the test case.
● The output (either state of the registers at exit or generated file) is verified.
All intermediate files are saved to make it easier to manually locate source of the
problem in case the test fails.

About 300 tests are performed, testing:

● All primitive operations.
● All standard library functions. If the function's behavior depends on the argument

value, multiple tests are performed to test all possibilities. For example abs
function has two tests – one for positive and one for negative values.

● Optimizations and instruction scheduling. In these tests in addition to verifying the
output, the generated assembly code is checked against a regular expression that
represents well-optimized code. The tested code fragments are small enough for this
approach to be viable. Verifying more complex functions would probably require
modifying the virtual machine to provide information on number of operations and
clock cycles used.

● Generation of actual pictures. The pictures are verified against known-good pictures
using MD5. These tests can check that changes in the compiler did to introduce bugs

41

Test example – test case that verifies normalize function

def test_normalize
 f = "vector f(vector x) { return normalize(x); }"
 res = Driver.compile_and_run(__LINE__, f,
 [3.0, 4.0, 0.0])
 assert_equal([0.6, 0.8, 0.0],
 res[:vector],
 "normalize(x) should work")
end

Figure 11.1

in the rendering. However floating point inaccuracies can make the images be
slightly different, so in case of a MD5 mismatch a human must verify whether there
it is an actual bug or just a minor mismatch.

11.2 Automatic code coverage checking

Test coverage is automatically checked using rcov program. Data from all tests is
aggregated and statistics are generated in form of HTML files. Currently 91% lines of
the Ruby part of the compiler is executed in at least one test. Most of the code that is
not executed consists of:

● Various sanity checks, like code that raises an exception when a function was called
with wrong type of arguments.

● Code related to debugging, that is inactive during normal compiler execution.
● Code that is impossible to trigger due to interactions between optimizations, like

code that prints out nop instructions, which is never run as all nops are eliminated by
optimizations. It would be possible to test such code by making it possible to
selectively turn off individual optimizations.

● Code that is inactive due to having incomplete support further in the pipeline, like
texture-related code, when textures are not supported by testing driver of the virtual
machine yet.

● Very small amount of code that can be realistically executed during compiler
execution, and which should be covered by tests.

Objective Caml part is not currently tested due to lack of adequate testing tools for
Objective Caml. This makes it more likely that some bugs have been left in the code.
The simplest solution would be recoding the rest of the compiler to Ruby.

Very high coverage makes it less likely that bugs were missed by testing, but of course
it does not provide absolute guarantees (it is commonly stated that good coverage level
is 80-90%). The measured coverage has line resolution, so it is possible that some code
is incorrectly reported as executed.

11.3 Build system

As the system consists of multiple executables written in different languages, the build
system can be quite complex. Compilation of code written in Objective Caml is
controlled by GNU make files using OCamlMakefile library to control dependencies
between various Objective Caml files automatically. Without OCamlMakefile
controlling build process would be more difficult.

The test framework uses Ruby-native rake as its build system, however the only
Rakefile contains a few simple testing and cleaning related actions, so it might be better
to port it to GNU make for consistency. Alternatively OCamlMakefile could be ported
to rake, what would enhance portability and reliability of the build system, however it
would require significantly more work.

11.4 Strings support

Full RenderMan-compatible string support was considered infeasible as features like
string-generation at runtime require memory management and significant architectural
changes would be necessary to integrate it. On the other hand full strings support is
needed by few shaders, as the strings are most commonly used as identifiers, and the

42

the only operation needed for that is equality testing. There are multiple possible ways
to implement such limited strings. Some of them are:

● Representing strings as memory pointers, and performing equality testing by
iteratively comparing the referenced memory locations. The memory representation
could be 0-terminated or specify explicit length. This implementation would be
extremely slow as a loop and multiple memory loads would be required. The main
benefit of this implementation is its easy extension to more advanced string support
in the future, unconditional correctness, and relative architectural simplicity.

● Mapping strings to unique numbers using a string registry, and performing
equality testing by comparing the numbers. Such implementation would have very
good performance and would be unconditionally correct. Inside a single compilation
unit it would be a preferred choice. The major problem of this implementation is
maintaining the registry across different compiled units. Separately compiled
shaders need to use the same identifiers for the strings. Also if string identifiers are
used in the scene data, they need to be kept synchronized with registries used by the
shaders. This greatly complicates the architecture.

● Mapping strings to unique numbers using a hashing function, and performing
equality testing by comparing the numbers. This implementation has great
performance characteristics and does not require any architectural support. Its major
downside is small possibility of a random collision. According to the birthday
paradox, the chance of collision is roughly proportional to square of number of
strings. For 24-bit hashes, 600 strings have approximately 1% chance of collision,
an 4800 strings have approximately 50% chance. It is considered unlikely for
shaders to use that many strings, and even in case where a total number of strings in
all shaders is high, they are most likely to be compared only with a few other
strings, thus most collisions will not lead to any errors.

The compiler uses hashing solution. As an additional protection, a warning is issued by
the compiler if multiple strings in a single compilation hash to the same value. The
compiler uses 24 first bits of MD5 hash, converted to a floating point number. Number
of bits may need to be adapted to precision of the hardware floating point format.

Other solutions are also possible, like mapping at run time by a special linker, or using
a different methods inside a compilation unit and across compilation units. Such
methods invariably lead to greater architectural complexity, and have not been further
investigated.

11.5 Version control

All source files of the project are managed using Subversion revision control system.
Subversion has many advantages over the older CVS system, including fully atomic
commits and ability to copy, move and delete files inside the repository without losing
revision history. It is used by many large project including Apache, KDE, GCC, and
Python.

Automatic revision control with very frequent commits enabled development without
having to worry about accidentally breaking the code. A few times it also made it
significantly easier to trace back the change that was responsible for a newly found
bug.

Commits had been made after any complete change, sometimes as often as every 5

43

minutes. After the test suite had been developed, it had been run before any commit to
make sure that the changes did not accidentally break unrelated code. As a general rule
a version that passed fewer tests than the last one was not committed.

12 Results
Two complete examples from the test set are presented. They both apply different
shaders to the Stanford Bunny model [BUNNY].

12.1 Depth shaded bunny

The first example is shader which smoothly changes color from green to magenta
depending on distance from the camera.

Code consists of two parts – a “main” shader which shots primary rays, in form of a
RenderMan function which takes point argument (pixel position) and returns color, and
a RenderMan surface shader.

/* Default surface shader */
surface s() {
 float dist = distance(P, E);
 float g = 1.8 - dist;
 float rb = 1.0 - g;
 Ci = (rb, g, rb);
}

/* "Main" shader */
color m(point P) {
 point orig = (0.0, 0.0, 0.0);
 vector dir0 = (0.0, 0.0, 1.0);
 vector diri = (2.0,-2.0, 0.0);
 vector s = (0.5, 0.5, 0.0);
 vector dir = normalize(dir0 + (P - s) * diri);

 return trace(orig, dir);
}

The surface shader is compiled to the following assembly code:

SUBROUTINE_ENTRY_s:
 ; R3.xyz = ray direction * distance traveled by ray
 mul R3.xyz, R1.xyz, HIT.z
 ; R2.xyz (P) = ray origin + (ray direction * distance traveled by ray)
 ; E is currently always <0, 0, 0>,
 ; so compiler knows R2 is also (P – E)
 add R2.xyz, R0.xyz, R3.xyz
 ; R15.y = 1/sqrt((P – E) . (P – E)) = 1 / distance(P, E)
 ; Uses merged instruction dp3_rsq
 dp3_rsq R15.y, R2.xyz, R2.xyz
 ; S.z = distance(P, E)
 ; S.y was forwarded instead of using a register

44

 mov_rcp R15.z, S.y
 ; R1.w (g) = 1.8 – dist
 ; S.z was forwarded like S.y
 add R1.w, 1.8, -S.z
 ; R0.w (rb) = 1.0 – g
 add R0.w, 1.0, -R1.w
 ; R0 (Ci) = (rb, g, rb)
 ; Compiler sets two components with single mov
 ; It is still unable to compute directly into
 ; component or components of a vector
 mov R0.xz, R0.w
 mov R0.y, R1.w
 mov R0, R0 + return or xyzw (>=0 or <1)

The main shader:

SUBROUTINE_ENTRY_m:
 ; Initialization of vectors and computation of ray parameters
 mov R2.xy, 0.5
 mov R3.x, 2.0
 mov R2.z, 0.0
 mov R4.xy, 0.0
 mov R3.y, -2.0
 add R5.xyz, R0.xyz, -R2.xyz
 mov R4.z, 1.0
 mov R3.z, 0.0
 mad R6.xyz, R5.xyz, R3.xyz, R4.xyz
 dp3_rsq R15.w, R6.xyz, R6.xyz
 ; Ray direction is computed directly into R1.xyz (see more explanations below)
 mul R1.xyz, R6.xyz, S.w
 ; The ray is shot
 ; 0.0 is point of origin. Constant 0.0 means all components are 0.0
 ; R1.xyz is computed direction
 ; C31 contains default parameters for trace (culling depth etc.)
 trace 0.0, R1.xyz, C31
 ; R0.xyz contains barycentric coordinates and distance traveled by ray
 ; This mov is not eliminated as in current representation trace+mov
 ; is a single instruction, and only get separated on code output.
 mov R0.xyz, HIT.xyz
 ; If hit, go to L23
 mov R15.w, HIT.z + jmp L23, w (>=0)
 ; If miss, set color to <0.0, 0.0, 0.0> and return
 mov R0.xyz, 0.0
L26:
 mov R0, R0 + return or xyzw (>=0 or <1)
L23:
 ; R0.xyz (ray origin) = <0.0, 0.0, 0.0>
 ; R1.xyz should be ray direction. Instead of setting it here,

45

 ; the compiler computes it directly to R1.xyz earlier.
 ; This was achieved by “friend” allocation. As ray direction was moved
 ; to R1.xyz, register R1.xyz was the most preferred register for it.
 mov R0.xyz, 0.0
 ; Call the surface shader (address in HIT.w) and return.
 ; Both the surface shader and this function return color in R0.xyz,
 ; so nothing needs to be copied.
 call HIT.w push 0
 jmp L26

The rendered result can be seen on Image 12.1.

Image 12.1

12.2 More realistic bunny

A second example is the same bunny in very simple but more realistic shading model.
The compiler does not yet perform normal interpolation, so all polygons are single-
colored, and the result does not look very well. The compiler can easily be modified to
support normal interpolation by changing surface shader initialization assembly code,
however this would also require time-consuming changes in programs used to import
scenes.

The code consists of two parts, “main” shader identical to one in the previous example,
and the following surface shader:

surface s() {
 vector norm = N;
 if (norm . I > 0)
 norm = -norm;

 vector light_source = vector(-0.2, 0.5, 0.0);
 vector hit_to_light = normalize(light_source - P);

46

 float uf = clamp(norm . hit_to_light, 0, 1);
 float i = clamp(0.6 * uf + 0.4, 0, 1);
 Ci = Cs * i;
}

The shader calculates amount of light coming from a single point light source by
computing clamped dot product of surface normal and normalized vector pointing from
the current surface point (P) towards the light source. As all polygons have two sides,
normal (N) can flipped depending on direction of incoming camera ray (I). Light
intensity is sum of ambient light (0.4) and light coming from the light source (0.0 to
0.6). Light intensity is multiplied by surface color (Cs) and returned (Ci).

Generated code is:

SUBROUTINE_ENTRY_s:
 ; HIT_TRI contains address of triangle data
 ; Load the triangle data
 load I0, HIT_TRI, 0
 ; Data consists of 4 pointers:
 ; I0 – [Data for vertex A]
 ; I1 – [Data for vertex B]
 ; I2 – [Data for vertex C]
 ; I3 – [Data for the triangle itself]
 ; Load first 4 words of each of the four
 mov A, I0
 load I0, A0, 0
 load I1, A1, 0
 load I2, A2, 0
 load I3, A3, 0
 ; Code may seem chaotic, as scheduling separates related instruction.
 ; R9.xyz = Vector from B to A
 add R9.xyz, I1.xyz, -I0.xyz
 ; R8.xyz = Vector from C to A
 add R8.xyz, I2.xyz, -I0.xyz
 ; R11.xyz = Vector traveled by ray
 mul R11.xyz, R1.xyz, HIT.z
 ; R5.xyz (Cs) = triangle color
 mov R5.xyz, I3.xyz
 ; Normal computations, part 1
 mul R10.xyz, R9.zxy, R8.yzx
 ; R4.xyz (P) = hit position
 add R4.xyz, R0.xyz, R11.xyz
 ; Normal computations, part 2
 ; By using mad instruction, cross product can be performed in just 2 operations
 ; R12.xyz = geometric normal before normalization
 mad R12.xyz, R9.yzx, R8.zxy, -R10.xyz
 ; Normalize R12.xyz
 ; R2.xyz is Ng (geometric normal)

47

 ; By default N (normal) equals Ng (geometric normal)
 ; As the compiler does not perform normal interpolation, R2.xyz is also N.
 dp3_rsq R15.x, R12.xyz, R12.xyz
 mul R2.xyz, R12.xyz, S.x
 ; Check whether normal needs flipping by computing dot product of
 ; R2.xyz (N) and R1.xyz (I – incoming ray direction)
 dp3 R2.w, R2.xyz, R1.xyz
 ; If not, skip the next instruction
 add R15.w, 0.0, -R2.w + jmp L17, w (>=0)
 ; If yes, flip the normal, which is still in R2.xyz.
 ; In SSA form, “normal before flipping” and “normal after possible flipping”
 ; are unrelated variables.
 ; Because not-flipping branch had a copy from the former to the latter,
 ; register allocation allocated both to the same register R2.xyz
 ; and the original variable was reassembled.
 mov R2.xyz, -R2.xyz
L17:
 ; R3.xyz is location of the light source
 mov R3.x, -0.2
 mov R3.y, 0.5
 mov R3.z, 0.0
 ; Compute and normalize hit_to_light vector
 add R7.xyz, R3.xyz, -R4.xyz
 dp3_rsq R15.y, R7.xyz, R7.xyz
 mul R6.xyz, R7.xyz, S.y
 ; Compute light coming from the light source
 ; Unfortunately compiler does not know how to use _sat modifier, and instead
clamps by two branches.
 dp3 R1.w, R2.xyz, R6.xyz
 add R15.w, 0.0, -R1.w + jmp L26, w (>=0)
 add R15.w, 1.0, -R1.w + jmp L28, w (>=0)
 mov R1.w, 1.0
L28:
 ; Compute total light intensity.. Again, _sat should be used.
 ; This clamp is not strictly necessary, as with these constants
 ; insensity can never go out of range.
 ; This mad instruction contains two constants and most likely will
 ; fail to compile on the real hardware.
 ; The compiler does not currently know about such limits,
 ; as the virtual machine does not have them.
 mad R0.w, 0.6, R1.w, 0.4
 add R15.w, 0.0, -R0.w + jmp L31, w (>=0)
 add R15.w, 1.0, -R0.w + jmp L33, w (>=0)
 mov R0.w, 1.0
L33:
 ; Color (Ci – R0.xyz) = surface color (Cs – R5.xyz) * light intensity (R0.w)
 mul R0.xyz, R5.xyz, R0.w
 mov R0, R0 + return or xyzw (>=0 or <1)

48

L31:
 mov R0.w, 0.0
 jmp L33
L26:
 mov R1.w, 0.0
 jmp L28

The rendered result can be seen on Image 12.2.

Image 12.2

13 Limitations and future work
The project reached its goals of enabling shader programming for RPU in a high level
language. However there is a big scope for possible future enhancements. Multiple
limitations and potential enhancements have been mentioned in sections about
individual components.

13.1 Hardware compatibility

The compiler is targeting the virtual machine, not the actual hardware. So it is likely
that some modifications are necessary to make the generated code work on the RPU
hardware.

One identified area where virtual machine and hardware mismatch are equality tests.
The compiler assumes that equality tests and comparisons are always correct, and that
subtracting a number from itself always yields 0.

The only tests generated by the compiler are (>=0) and (=0). Other tests provided by
the instruction set, like (>=1) and various combinations of tests are not used. All
inequality operators in RenderMan source (>=, >, <=, <) are converted to a subtraction
and a (>=0) test. Equality test operation (==, !=) is converted to a subtraction and a
(=0) test.

49

Because of hardware's inconsistent behavior, it was decided that sign function returns
1 for non-negative numbers and -1 for negative numbers. Returning 0 for 0 is not
implemented, as it would be impossible to do it consistently on the current hardware.
This incompatibility should be corrected when the hardware support for 0 is considered
adequate.

Another area where compatibility needs some work is memory interface. As memory
and texture format of the hardware are not documented, it is very likely that compiler
modifications will be necessary to support memory access and texture access correctly.

13.2 RenderMan compatibility

The implemented subset of RenderMan Shading Language is sufficient for coding
simple shaders, however it would be beneficial to support larger subset of RSL and
reduce incompatibilities.

In particular the following parts of RSL are not supported:

● Matrices and multiple coordinate systems.
● Many standard library functions like noise functions. Most of them can be

implemented as user functions without changes in the compiler.
● Functions with complex interfaces, like those that use extern variables, modify their

arguments, nested functions etc.
● Volume shaders, imager shaders, better support for complex light shaders,

displacement shaders (limited to modifying normals).
● There is no support for polymorphic functions except for a few functions in the

standard library like mix and clamp. The precise algorithm is not described in the
RenderMan specification, so some reverse engineering would be necessary to
support RenderMan-compatible polymorphism.

13.3 Streamlining

The current design fulfills its role well, however there are a few areas where significant
simplification could be performed without loss of functionality. The Objective Caml
part of the compiler could be merged with the Ruby part. It would simplify the design,
and make automatic test coverage measurements possible.

Using two separate build systems can be problematic, and it would be preferable to
merge them. The build system is not able to build standard installable packages (like
RPM or DEB) and the only way to use the compiler is to install it from source.

13.4 Testability

Compiler design already has high consideration for testability. Many great
improvements can be still possible. Special virtual machine driver could be built that
would report execution statistics like number of operations executed, code cycles, and
stalls, for easier testing of optimizations. It should even be possible to extract
information like coherence between neighboring threads.

A benchmark suite using such driver could be prepared for testing effects of
optimizations, and identifying their weak and strong points. Together with an option of
selective disabling of individual optimizations it could make it possible to identify
redundant optimizations to improve code quality.

50

It should also be possible to compare per-pixel rendering of scenes (within tolerance
range due to imprecision) with a software implementation of RenderMan instead of
relying on human inspection and hashing against well-know rendering.

13.5 Optimizations

The generated code is often of good quality, however there is always space for
improvement. Particular areas where improvement is possible include:

● User functions should be inlinable, and inlining should often be performed earlier.
● Four S subregisters should be used more efficiently. The current scheme is inelegant

and can lead to somewhat suboptimal code.
● More global optimizations. Among possible optimizations are: loop unrolling, code

motion, and automatic vectorization. Many advanced SSA-based algorithms can
easily be fitted into the current framework.

● Optimizations of single-component access are particularly lacking – for example the
compiler does not know that setting x, y and z components of a vector can be done
in parallel. Scalar variables cannot be allocated to components of vector variables. A
fully generic scheme where vectors are split into 3 independent scalar variables and
are only reassembled after the optimization

● Instruction scheduling that uses information outside of a single basic block. There
are multiple algorithms to do so.

13.6 Taking advantage of full power of the hardware

Power of the hardware is far from being fully utilized by the compiler. Some of the
suboptimalities are:

● Vector and scalar instructions are never paired with each other.
● Pipeline model is very simplistic:

● Instruction latencies are completely arbitrary, what can result in suboptimal
instruction scheduling.

● Compiler does not generate flags that control instruction dependencies,
leaving it to assembler. The compiler knows that two writes to junk register
R15 do not block each other, on the other hand if the dependencies are
handled inside assembler, this information is not available any more, and less
efficient code is going to be generated.

● “Read after Write” (actual data flow) dependencies require the second
instruction to wait for the first to finish. With other dependencies it might be
enough not to reorder instructions. For example if we have instructions:
add R0, R1, R2
mul R2, R3, R4

Then they cannot be reordered or value of R2 would be wrong. On the other
hand the second instruction has no reason to wait for the first, as the write to
R2 will not be performed before read of R2 in any realistic scenario.
Misestimating latency in such cases can lead to selection of suboptimal
scheduling.

● Only two pairs of instructions are merged – dp3 and mov_rsq into dp3_rsq,
and mul and add into mad. Other pairs could be merged, for example mov_rsq
and mov_rcp can be merged with most other instructions.

51

13.7 Portability

The project uses mostly standard tools available on most distributions of Linux and
other Unix-like systems. It has only been tested on Ubuntu Linux 6.06, however it is
likely that ports to other Unix-like systems like BSD, Solaris or Mac OS X will be very
simple.

The only project's dependency that is not prepackaged for Ubuntu 6.06 is rcov 0.7 for
automatic test coverage reports. The available version 0.6 lacks essential feature of
aggregating coverage data over multiple runs. It can be installed as a Ruby gem. rcov is
only used for generating coverage reports and the project is fully functional without it.

Porting to non-Unix systems like Microsoft Windows can be more difficult, especially
considering the fragile build system. However nothing in the project is fundamentally
non-portable.

The project uses two pieces of foreign code – unmodified OCamlMakefile is included
as it is required to build the Objective Caml part of the compiler, and DynArray
extracted from OCaml ExtLib to avoid unnecessary compile-time dependencies. They
are included in the repository for convenience and system versions can be used instead
if available.

13.8 Other improvements

One possible improvement would be replacing the current parser by one that has better
error reporting. It can be done by modifying current parser, using alternative parser
generator (like ANTLR), or coding a recursive-descent parser by hand. In my opinion
the preferred solution would be using ANTLR, as it gives acceptable error reporting out
of the box and is easier to write and debug than hand-written parsers.

14 Conclusions
The project was able to reach its goals. The supported subset of RenderMan Shading
Language is sufficient for writing realistic shaders, and generated code is reasonably
efficient. In addition to the main compiler, two other important elements developed for
the project were a virtual machine and a comprehensive test suite of about 300 tests
that cover most of the code.

While the project can be considered successful, and is definitely useful, it needs a lot of
further work to reach production quality.

Only an actual field test can tell for sure how “future-proof” is the compiler, however I
was able to do extensive modifications (like addition of instruction scheduling, early
inlining, and common subexpression elimination) in matter of hours, so in my
expectations it should be able to accommodate significant modifications without any
problems. Particularly valuable is the test suite that assures that modifications did not
break unrelated code – an event very common due to unpredicted interactions between
different optimizations.

One aspect that was not realized was testing on testing with the real hardware. This
final phase of compiler development is still to be done.

Bibliography
● [WIKI] – “Graphics processing unit” article on Wikipedia

52

http://en.wikipedia.org/wiki/Graphics_processing_unit

● [RISPEC] – The RenderMan Interface, Version 3.2.1,
http://renderman.pixar.com/products/rispec/rispec_pdf/RISpec3_2.pdf

● [RPU05] - Sven Woop, Jörg Schmittler, and Philipp Slusallek, RPU: A
Programmable Ray Processing Unit for Realtime Ray Tracing. Proceedings of ACM
SIGGRAPH 2005.

● [SSA] - Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form and the
control dependence graph. ACM Transactions on Programming Languages and
Systems, 13(4):451-490, Oct 1991.

● [AIX] – C for AIX User's Guide,
http://www.ibm.com/software/awdtools/caix/downloads/caix50.pdf

● [COLOR] - G.J. Chaitin, M.A. Auslander, A.K. Chandra, J. Cocke, M.E. Hopkins,
and P.W. Markstein. Register Allocation via Coloring. Computer Languages, 6:45--
57, January 1981.

● [NP] - Richard M. Karp. "Reducibility Among Combinatorial Problems." In
Complexity of Computer Computations, Proc. Sympos. IBM Thomas J. Watson Res.
Center, Yorktown Heights, N.Y.. New York: Plenum, p.85-103. 1972.

● [SCCP] - Wegman, Mark N. and Zadeck, F. Kenneth. "Constant Propagation with
Conditional Branches." ACM Transactions on Programming Languages and
Systems, 13(2), April 1991, pages 181-210.

● [GVN] - Alpern, Bowen, Wegman, Mark N., and Zadeck, F. Kenneth. "Detecting
Equality of Variables in Programs.” Conference Record of the Fifteenth Annual
ACM Symposium on Principles of Programming Languages (POPL), ACM Press,
San Diego, CA, USA, January 1988, pages 1-11.

● [PRESSA] - Kennedy, R., Chan, S., Liu, S.M., Lo, R., Peng, T., and Chow, F.
Partial Redundancy Elimination in SSA Form. ACM Transactions on Programming
Languages Vol. 21, Num. 3, pp. 627-676, 1999.

● [PRE] - Morel, E., and Renvoise, C. Global Optimization by Suppression of Partial
Redundancies. Communications of the acm, Vol. 22, Num. 2, Feb. 1979.

● [ALPHA] – Tru64 Calling Standard for Alpha Systems,
http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51_HTML/AR
H9MBTE/NCH0001X.HTM

● [SCHED] – D. Bernstein, M. Rodeh, and I. Gertner. On the Complexity of
Scheduling Problems for Parallel/Pipelined Machines. IEEE Transactions on
Computers, 38(9):1308–13, September 1989

● [BUNNY] – The Stanford Bunny home page,
http://www.gvu.gatech.edu/people/faculty/greg.turk/bunny/bunny.html

53

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://www.gvu.gatech.edu/people/faculty/greg.turk/bunny/bunny.html
http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51_HTML/ARH9MBTE/NCH0001X.HTM
http://h30097.www3.hp.com/docs/base_doc/DOCUMENTATION/V51_HTML/ARH9MBTE/NCH0001X.HTM
http://www.ibm.com/software/awdtools/caix/downloads/caix50.pdf
http://renderman.pixar.com/products/rispec/rispec_pdf/RISpec3_2.pdf

	Abstract
	1 Introduction
	1.1 Real-time photorealistic computer graphics
	1.2 RPU Ray Tracing Hardware Architecture
	1.3 RenderMan Shading Language (RSL)
	1.4 RSL compiler for RPU
	1.5 Overview

	2 RPU Ray Tracing Hardware Architecture
	2.1 RPU rendering model
	2.2 Instruction set
	2.3 Registers
	2.4 Instruction execution
	2.5 Call stack
	2.6 Limitations

	3 RenderMan Interface
	3.1 RenderMan rendering model
	3.2 RenderMan Shading Language
	3.3 Mapping between RenderMan shading model and the hardware

	4 Virtual machine
	4.1 Ray tracing in the virtual machine
	4.2 Virtual machine drivers

	5 Compiler
	5.1 Compilation process
	5.2 Parsing
	5.3 Function inlining
	5.4 Compilation of multiple functions

	6 Intermediate representation
	6.1 Single Static Assignment form
	6.2 Copy propagation
	6.3 Opcode simplification and constant folding
	6.4 Common Subexpression Elimination
	6.5 Other optimizations

	7 Code generation
	7.1 Application Binary Interface
	7.2 Calling Convention
	7.3 ABI and performance
	7.4 Assembly-level optimizations
	7.5 Opcode simplification and constant folding
	7.6 Forwarding
	7.7 Dead code elimination

	8 Register allocation
	9 Instruction scheduling
	9.1 Instruction scheduling example
	9.2 Special operations in scheduling
	9.3 Instruction pairing
	9.4 Other possible improvements of the scheduling algorithm

	10 Code output
	11 Implementation issues
	11.1 Testing
	11.2 Automatic code coverage checking
	11.3 Build system
	11.4 Strings support
	11.5 Version control

	12 Results
	12.1 Depth shaded bunny
	12.2 More realistic bunny

	13 Limitations and future work
	13.1 Hardware compatibility
	13.2 RenderMan compatibility
	13.3 Streamlining
	13.4 Testability
	13.5 Optimizations
	13.6 Taking advantage of full power of the hardware
	13.7 Portability
	13.8 Other improvements

	14 Conclusions
	Bibliography

